Skip to main content

blood vessels

Creative Minds: Fighting Cancer with Supercomputers

Posted on by

Amanda Randles

Amanda Randles

After graduating college with degrees in physics and computer science, Amanda Randles landed her dream first job. She joined IBM in 2005 to work on its Blue Gene Project, which had just unveiled the world’s fastest supercomputer. So fast, in fact, it’s said that a scientist with a calculator would have to work nonstop for 177,000 years to perform the operations that Blue Gene could complete in one second. As a member of the applications team, Randles was charged with writing new code to make the next model run even faster.

Randles left IBM in 2009 for graduate school, with the goal to apply her supercomputing expertise to biomedical research. She spent the next several years developing the necessary algorithms to produce a high-resolution 3D model of the human cardiovascular system, complete with realistic blood flow. Now, an assistant professor at Duke University, Durham, NC, and a 2014 NIH Director’s Early Independence awardee, Randles will build on her earlier work to attempt something even more challenging: simulating the movement of cancer cells through the circulation to predict where a tumor is most likely to spread. Randles hopes all of her late nights writing code will one day lead to software that helps doctors stage cancer more precisely and gives patients accurate personalized computer simulations that put an earlier, potentially life-saving bullseye on secondary tumors.


Nanoparticles Target Damaged Blood Vessels

Posted on by

Microscopic view of damaged vs. undamaged lamina

Caption: [A] Elastin stain (black) showing damaged elastic lamina in aorta. Inset (higher magnification) shows fluorescent nanoparticles attached to aorta where elastin is damaged. [B] Elastin stain showing aorta with undamaged elastic lamina. Inset shows no nanoparticle attachment. L stands for lumen, the open area inside the aorta.
Credit: Naren Vyavahare, Clemson University

Cardiovascular disease (CVD) is the number one killer of Americans. There are, in fact, many types of CVD—but common to most of them is damaged blood vessels. Stents can be inserted to prop open collapsed or narrowed arteries, and deliver drugs inside vessels. But, so far, we haven’t been able to repair the damaged vessels themselves. Researchers in an NIH-funded team of bioengineers at Clemson University, in South Carolina, are among those who believe that delivering drugs directly to the site of damage to mend the vessel might boost our ability to treat CVDs. And they’ve devised a way to deliver such drugs right where they want them: using specially-crafted nanoparticles.


Reprograming Adult Cells to Produce Blood Vessels

Posted on by

Green mesh with blue dots over a thick red mesh

Caption: New network of blood vessels (green) grown from reprogrammed adult human cells (blue: connective tissue, red: red blood cells)
Credit: Reproduced from R. Samuel et al, Proc Natl Acad Sci U S A. 2013;110:12774-9.

Individuals with heart disease, diabetes, and non-healing ulcers (which can lead to amputation) could all benefit greatly from new blood vessels to replace those that are diseased, damaged, or blocked. But engineering new blood vessels hasn’t yet been possible. Although we’ve learned how to reprogram human skin cells or white blood cells into so-called induced pluripotent stem (iPS) cells—which have the potential to develop into different cell types—we haven’t really had the right recipe to nudge those cells down a path toward blood vessel development.

But now NIH-funded researchers at Massachusetts General Hospital in Boston have taken another step in that direction.


Lighting up the Eyes

Posted on by

microscopic image of a network of blood vessels

Image created using a nuclear label of a flat-mount preparation of the hyaloid vessels from the eye.
Source: Richard Lang, Cincinnati Children’s Hospital Medical Center, OH

This image may conjure up thoughts of bioluminescent jellyfish, but it actually shows a network of developing blood vessels in the eye of a three day old mouse. A study in Nature last week determined that light regulates the pattern of mouse blood vessels as they develop. Observing the intermediate states of eye development is important because abnormal blood vessel development is a major cause of blindness in premature infants.

Funded by National Eye Institute, NIH.


Previous Page