Skip to main content

Bill and Melinda Gates Foundation

A Warm Welcome to African Fellows

Posted on by

I took part in the orientation session for the new African Postdoctoral Training Initiative (APTI) on February 28, 2019. The session was held at the Fogarty Stone House on the NIH campus, and afterwards I joined this inaugural group of APTI fellows and event organizers for a group photo. The orientation, which provided an overview of APTI and its vision to help early-career researchers from Africa excel, was hosted by NIH and its partners in this initiative, the Bill and Melinda Gates Foundation and the African Academy of Sciences. The fellows hail from six African countries, and they will work over the next few years in 10 NIH labs in Maryland, North Carolina, and Montana. Credit: Marleen Van den Neste.

Workshop on Global Health

Posted on by

Francis Collins walking with Bill Gates and Tony Fauci
The NIH teamed with the Bill Gates and Melinda Gates Foundation to hold their fifth annual consultative workshop on global health. The workshop took place on December 11, 2018 in Bethesda, MD. Some of the topics discussed were a universal flu vaccine, tuberculosis, HIV/AIDS, malaria, and maternal, neonatal and child health. Here, I am heading to the workshop with Bill Gates (left) and Tony Fauci (far left), director of NIH’s National Institute of Allergy and Infectious Diseases. Credit: NIH

How to Make Biopharmaceuticals Quickly in Small Batches

Posted on by

Diagram showing three components of InSCyT system

Caption: InSCyT system. Image shows (1) production module, (2) purification module, and (3) formulation module.
Credit: Felice Frankel Daniloff, Massachusetts Institute of Technology, Cambridge

Today, vaccines and other protein-based biologic drugs are typically made in large, dedicated manufacturing facilities. But that doesn’t always fit the need, and it could one day change. A team of researchers has engineered a miniaturized biopharmaceutical “factory” that could fit on a dining room table and produce hundreds to thousands of doses of a needed treatment in about three days.

As published recently in the journal Nature Biotechnology, this on-demand manufacturing system is called Integrated Scalable Cyto-Technology (InSCyT). It is fully automated and can be readily reconfigured to produce virtually any approved or experimental vaccine, hormone, replacement enzyme, antibody, or other biopharmaceutical. With further improvements and testing, InSCyT promises to give researchers and health care providers easy access to specialty biologics needed to treat rare diseases, as well as treatments for combating infectious disease outbreaks in remote towns or villages around the globe.


Gene Drive Research Takes Aim at Malaria

Posted on by

Mosquitoes and a Double HelixMalaria has afflicted humans for millennia. Even today, the mosquito-borne, parasitic disease claims more than a half-million lives annually [1]. Now, in a study that has raised both hope and concern, researchers have taken aim at this ancient scourge by using one of modern science’s most powerful new technologies—the CRISPR/Cas9 gene-editing tool—to turn mosquitoes from dangerous malaria vectors into allies against infection [2].

The secret behind this new strategy is the “gene drive,” which involves engineering an organism’s genome in a way that intentionally spreads, or drives, a trait through its population much faster than is possible by normal Mendelian inheritance. The concept of gene drive has been around since the late 1960s [3]; but until the recent arrival of highly precise gene editing tools like CRISPR/Cas9, the approach was largely theoretical. In the new work, researchers inserted into a precise location in the mosquito chromosome, a recombinant DNA segment designed to block transmission of malaria parasites. Importantly, this segment also contained a gene drive designed to ensure the trait was inherited with extreme efficiency. And efficient it was! When the gene-drive engineered mosquitoes were mated with normal mosquitoes in the lab, they passed on the malaria-blocking trait to 99.5 percent of their offspring (as opposed to 50 percent for Mendelian inheritance).