Skip to main content

Autism Spectrum Disorder

Wearable Scanner Tracks Brain Activity While Body Moves

Posted on by

Credit: Wellcome Centre for Human Neuroimaging, University College London.

In recent years, researchers fueled by the BRAIN Initiative and many other NIH-supported efforts have made remarkable progress in mapping the human brain in all its amazing complexity. Now, a powerful new imaging technology promises to further transform our understanding [1]. This wearable scanner, for the first time, enables researchers to track neural activity in people in real-time as they do ordinary things—be it drinking tea, typing on a keyboard, talking to a friend, or even playing paddle ball.

This new so-called magnetoencephalography (MEG) brain scanner, which looks like a futuristic cross between a helmet and a hockey mask, is equipped with specialized “quantum” sensors. When placed directly on the scalp surface, these new MEG scanners can detect weak magnetic fields generated by electrical activity in the brain. While current brain scanners weigh in at nearly 1,000 pounds and require people to come to a special facility and remain absolutely still, the new system weighs less than 2 pounds and is capable of generating 3D images even when a person is making motions.


Studies of Dogs, Mice, and People Provide Clues to OCD

Posted on by

OCD

Thinkstock/wildpixel

Chances are you know someone with obsessive-compulsive disorder (OCD). It’s estimated that more than 2 million Americans struggle with this mental health condition, characterized by unwanted recurring thoughts and/or repetitive behaviors, such as excessive hand washing or constant counting of objects. While we know that OCD tends to run in families, it’s been frustratingly difficult to identify specific genes that influence OCD risk.

Now, an international research team, partly funded by NIH, has made progress thanks to an innovative genomic approach involving dogs, mice, and people. The strategy allowed them to uncover four genes involved in OCD that turn out to play a role in synapses, where nerve impulses are transmitted between neurons in the brain. While more research is needed to confirm the findings and better understand the molecular mechanisms of OCD, these findings offer important new leads that could point the way to more effective treatments.


How Kids See the World Depends a Lot on Genetics

Posted on by

Baby in eye gaze study

Caption: Child watches video while researchers track his eye movements.
Credit: Washington University School of Medicine, St. Louis

From the time we are born, most of us humans closely watch the world around us, paying special attention to people’s faces and expressions. Now, for the first time, an NIH-funded team has shown that the ways in which children look at faces and many other things are strongly influenced by the genes they’ve inherited from their parents.

The findings come from experiments that tracked the eye movements of toddlers watching videos of other kids or adult caregivers. The experiments showed that identical twins—who share the same genes and the same home environment—spend almost precisely the same proportion of time looking at faces, even when watching different videos. And when identical twins watched the same video, they tended to look at the same thing at almost exactly the same time! In contrast, fraternal twins—who shared the same home environment, but, on average, shared just half of their genes—had patterns of eye movement that were far less similar.

Interestingly, the researchers also found that the visual behaviors most affected in children with autism spectrum disorder (ASD)—attention to another person’s eyes and mouth—were those that also appeared to be the most heavily influenced by genetics. The discovery makes an important connection between two well-known features of ASD: a strong hereditary component and poor eye contact with other people.


Autism Spectrum Disorder: Progress Toward Earlier Diagnosis

Posted on by

Sleeping baby

Stockbyte

Research shows that the roots of autism spectrum disorder (ASD) generally start early—most likely in the womb. That’s one more reason, on top of a large number of epidemiological studies, why current claims about the role of vaccines in causing autism can’t be right. But how early is ASD detectable? It’s a critical question, since early intervention has been shown to help limit the effects of autism. The problem is there’s currently no reliable way to detect ASD until around 18–24 months, when the social deficits and repetitive behaviors associated with the condition begin to appear.

Several months ago, an NIH-funded team offered promising evidence that it may be possible to detect ASD in high-risk 1-year-olds by shifting attention from how kids act to how their brains have grown [1]. Now, new evidence from that same team suggests that neurological signs of ASD might be detectable even earlier.


Brain Scans Show Early Signs of Autism Spectrum Disorder

Posted on by

Unhappy baby

Source: Getty Images

For children with autism spectrum disorder (ASD), early diagnosis is critical to allow for possible interventions at a time when the brain is most amenable to change. But that’s been tough to implement for a simple reason: the symptoms of ASD, such as communication difficulties, social deficits, and repetitive behaviors, often do not show up until a child turns 2 or even 3 years old.

Now, an NIH-funded research team has news that may pave the way for earlier detection of ASD. The key is to shift the diagnostic focus from how kids act to how their brains grow. In their brain imaging study, the researchers found that, compared to other children, youngsters with ASD showed unusually rapid brain growth from infancy to age 2. In fact, the growth differences were already evident by their first birthdays, well before autistic behaviors typically emerge.


Previous Page Next Page