Cool Videos: Making Multicolored Waves in Cell Biology

Bacteria are single-cell organisms that reproduce by dividing in half. Proteins within these cells organize themselves in a number of fascinating ways during this process, including a recently discovered mechanism that makes the mesmerizing pattern of waves, or oscillations, you see in this video. Produced when the protein MinE chases the protein MinD from one end of the cell to the other, such oscillations are thought to center the cell’s division machinery so that its two new “daughter cells” will be the same size.

To study these dynamic patterns in greater detail, Anthony Vecchiarelli purified MinD and MinE proteins from the bacterium Escherichia coli. Vecchiarelli, who at the time was a postdoc in Kiyoshi Mizuuchi’s intramural lab at NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), labeled the proteins with fluorescent markers and placed them on a synthetic membrane, where their movements were then visualized by total internal reflection fluorescence microscopy. The proteins self-organized and generated dynamic spirals of waves: MinD (blue, left); MinE (red, right); and both MinD and MinE (purple, center) [1].

Continue reading

Snapshots of Life: Coming Face to Face with Development

Zebrafish larva

Credit: Oscar Ruiz and George Eisenhoffer, University of Texas MD Anderson Cancer Center, Houston

Zebrafish (Danio rerio) is a favorite model for studying development, in part because its transparent embryos make it possible to produce an ever-growing array of amazingly informative images. For one recent example, check out this Federation of American Societies for Experimental Biology’s 2016 BioArt winner, which shows the developing face of a 6-day-old zebrafish larva.

Yes, those downturned “lips” are indeed cells that will go on to become the fish’s mouth. But all is not quite what it appears: the two dark circles that look like eyes are actually developing nostrils. Both the nostrils and mouth express high levels of F-actin (green), a structural protein that helps orchestrate cell movement. Meanwhile, the two bulging areas on either side of the fish’s head, which are destined to become eyes and skin, express keratin (red).

Oscar Ruiz, who works in the lab of George Eisenhoffer at The University of Texas MD Anderson Cancer Center, Houston, used a confocal microscope to create this image. What was most innovative about his work was not the microscope itself, but how he prepared the sample for imaging. With traditional methods, researchers can only image the faces of zebrafish larvae from the side or the bottom. However, the Eisenhoffer lab has devised a new method of preparing fish larvae that makes it possible to image their faces head-on. This has enabled the team to visualize facial development at much higher resolution than was previously possible.

Continue reading

Simplifying HIV Treatment: A Surprising New Lead

CD4+ cells in the gut

Caption: PET/CT imaging reveals a surprisingly high concentration (yellow, light green) of key immune cells called CD4 T cells in the colon (left) of an SIV-infected animal that received antibody infusions along with antiviral treatment. Fewer immune cells were found in the small intestine (right), while the liver (lower left) shows a high level of non-specific signal (orange).
Credit: Byrareddy et al., Science (2016).

The surprising results of an animal study are raising hopes for a far simpler treatment regimen for people infected with the AIDS-causing human immunodeficiency virus (HIV). Currently, HIV-infected individuals can live a near normal life span if, every day, they take a complex combination of drugs called antiretroviral therapy (ART). The bad news is if they stop ART, the small amounts of HIV that still lurk in their bodies can bounce back and infect key immune cells, called CD4 T cells, resulting in life-threatening suppression of their immune systems.

Now, a study of rhesus macaques infected with a close relative of HIV, the simian immunodeficiency virus (SIV), suggests there might be a new therapeutic option that works by a mechanism that has researchers both excited and baffled [1]. By teaming ART with a designer antibody used to treat people with severe bowel disease, NIH-funded researchers report that they have been able to keep SIV in check in macaques for at least two years after ART is stopped. More research is needed to figure out exactly how the new strategy works, and whether it would also work for humans infected with HIV. However, the findings suggest there may be a way to achieve lasting remission from HIV without the risks, costs, and inconvenience associated with a daily regimen of drugs.

Continue reading

Snapshots of Life: Tales from the (Intestinal) Crypt!

Caption: This “spooky” video ends with a scientific image of intestinal crypts (blue and green) plus organoids made from cultured crypt stem cells (pink). 

As Halloween approaches, some of you might be thinking about cueing up the old TV series “Tales from the Crypt” and diving into its Vault of Horror for a few hours. But today I’d like to share the story of a quite different and not nearly so scary kind of crypt: the crypts of Lieberkühn, more commonly called intestinal crypts.

This confocal micrograph depicts a row of such crypts (marked in blue and green) lining a mouse colon. In mice, as well as in humans, the intestines contain millions of crypts, each of which has about a half-dozen stem cells at its base that are capable of regenerating the various types of tissues that make up these tiny glands. What makes my tale of the crypt particularly interesting are the oval structures (pink), which are organoids that have been engineered from cultured crypt stem cells and then transplanted into a mouse model. If you look at the organoids closely, you’ll see Paneth cells (aqua blue), which are immune cells that support the stem cells and protect the intestines from bacterial invasion.

A winner in the 2016 “Image Awards” at the Koch Institute Public Galleries, Massachusetts Institute of Technology (MIT), Cambridge, this image was snapped by Jatin Roper, a physician-scientist in the lab of Omer Yilmaz, with the help of his MIT collaborator Tuomas Tammela. Roper and his colleagues have been making crypt organoids for a few years by placing the stem cells in a special 3D chamber, where they are bathed with the right protein growth factors at the right time to spur them to differentiate into the various types of cells found in a crypt.

Once the organoids are developmentally complete, Roper can inject them into mice and watch them take up residence. Then he can begin planning experiments.

For example, Roper’s group is now considering using the organoids to examine how high-fat and low-calorie diets affect intestinal function in mice. Another possibility is to use similar organoids to monitor the effect of aging on the colon or to test which of a wide array of targeted therapies might work best for a particular individual with colon cancer.

Links:

Video: Gut Reaction (Jatin Roper)

Jatin Roper (Tufts Medical Center, Boston)

Omer Yilmaz (Massachusetts Institute of Technology, Cambridge)

The Koch Institute Galleries (MIT)

NIH Support: National Cancer Institute; National Institute on Aging

Global Effort to End AIDS Would Save Millions of Lives

Prevent HIV AIDS

Scanning electromicrograph of an HIV-infected T cell/NIAID

Almost 37 million people around the world are now infected with human immunodeficiency virus (HIV), the virus that causes AIDS [1]. But many don’t know they are infected or lack access to medical care. Even though major strides have been made in treating the infection, less than half receive antiretroviral therapy (ART) that could prevent full-blown AIDS and reduce the likelihood of the virus being transmitted to other people. Now, a new report restores hope that an end to this very serious public health challenge could be within reach—but that will require a major boost in commitment and resources.

The study conducted by an NIH-funded research team evaluated the costs and expected life-saving returns associated with ambitious goals for HIV testing and treatment, the so-called 90-90-90 program, issued by the Joint United Nations Programme on HIV/AIDS (UNAIDS) in 2014 [2]. The new analysis, based on HIV disease progression and treatment data in South Africa, finds that those goals, though expensive to implement, can be achieved cost-effectively, potentially containing the AIDS epidemic and saving many millions of lives around the globe.

Continue reading