Skip to main content

actin

Snapshots of Life: Visualizing Blood Vessels

Posted on by

Blood Vessels

Credit: Christopher V. Carman and Roberta Martinelli, Harvard Medical School, Boston

This might look a bit like a fish net, but what’s actually caught in this image is the structure of the endothelium—the thin layer of cells lining your blood vessels that controls the flow of molecules in and out of the bloodstream. The red lines are the actin filaments that give each endothelial cell its shape, while the purple are proteins called cadherins.

Most of the time, the actin “ropes” and cadherin “glue” act together to form a tight seal between endothelial cells, ensuring that nothing leaks out of blood vessels into surrounding tissue. However, when endothelial cells sense an infection or an injury, the cadherins open gaps that allow various disease-fighting or healing factors or cells present in the blood to breach the barrier and enter infected or injured tissue. After the infection subsides or wound heals, the gaps close and the blood vessel is once again impenetrable.


The Beauty of Smooth Muscle

Posted on by

We humans have long wondered how, exactly, we develop from embryos into adults. This photo of an embryonic smooth muscle cell hints at the tremendous complexity of this fundamental biological mystery. And for those of you who might be wondering just what smooth muscles are, they’re the involuntary muscles found in places like the walls of our blood vessels, the digestive tract, the bladder, and the respiratory system.

This exquisite photo was produced using laser scanning confocal microscopy — a precise imaging method that includes the dimension of depth for scientific analysis. Here, green is used to label thin filaments of the protein actin, which is a key component of the cell’s cytoskeleton, and blue indicates another protein, called vinculin, which is enriched in locations involved in cell-cell adhesion.

Slowly but surely, using all the technology and tools available to us, we are unraveling the mysteries of biology — and turning our discoveries into health.


Science Becomes Art

Posted on by

Illustration of a human bone cancer cell

Credit: Dylan T. Burnette, NICHD, NIH

This stunning picture of a human bone cancer cell won artistic accolades: 3rd place in the Nikon Small World Competition. DNA, the blueprint of life, is actually blue in this photo. The yellow squiggles are little powerhouses called mitochondria that generate ATP ‘fuel’ for the cell. The purple wisps are filaments of actin, which help the cell move, keep its shape, and traffic chemicals from one part of the cell to another.

Happy New Year everyone.

 


Previous Page