Skip to main content

14 Search Results for "adolescent brain"

Study May RAISE Standard for Treating First Psychotic Episode

Posted on by

Support for young adults

Thinkstock photo

Each year, about 100,000 American adolescents and young adults, their lives and dreams ahead of them, experience their first episode of psychosis, a symptom of schizophrenia and other mental illnesses characterized by dramatic changes in perception, personality, and ability to function [1]. This often-terrifying experience, which can last for months, will prompt some to seek help from mental health professionals, whose services can in many situations help them get back on track and reduce the risk of relapse. Still, for far too many young people and their families, the search for help is riddled with long delays, contradictory information, and inadequate treatment in a mental health system whose resources have been stretched thin.

There’s got to be a better way to reach more of these young people, and, now, results of a major NIH-supported clinical study point to a possible way to get there [2]. In this large study, published in the American Journal of Psychiatry, teams of mental health specialists partnered with young people and their families to create individualized treatment plans. After two years of follow-up, researchers found that this personalized, team-based approach to care had helped more young people stick with treatment, feel better about their quality of life, return to school and work, and seek follow-up help than standard care involving a single clinician.

Many studies show the longer that people with psychotic episodes go untreated, the harder it is to stabilize their symptoms and the more problems they develop. A common presentation is schizophrenia, a persistent, severe brain disorder that often can be diagnosed only months or even years after a first psychotic episode. Schizophrenia affects 1.1 percent of Americans ages 18 and older, and currently accounts for about 30 percent of all spending on mental health treatment [3].


LabTV: Curious About a Mother’s Bond

Posted on by

Bianca JonesThe bond between a mother and her child is obviously very special. That’s true not only in humans, but in mice and other animals that feed and care for their young. But what exactly goes on in the brain of a mother when she hears her baby crying? That’s one of the fascinating questions being explored by Bianca Jones Marlin, the young neuroscience researcher featured in this LabTV video.

Currently a postdoctoral fellow at New York University School of Medicine, Marlin is particularly interested in the influence of a hormone called oxytocin, popularly referred to as the “love hormone,” on maternal behaviors. While working on her Ph.D.in the lab of Robert Froemke, Marlin tested the behavior and underlying brain responses of female mice—both mothers and non-mothers—upon hearing distress cries of young mice, which are called pups. She also examined how those interactions changed with the addition of oxytocin.

I’m pleased to report that the results of the NIH-funded work Marlin describes in her video appeared recently in the highly competitive journal Nature [1]. And what she found might strike a chord with all the mothers out there. Her studies show that oxytocin makes key portions of the mouse brain more sensitive to the cries of the pups, almost as if someone turned up the volume.

In fact, when Marlin and her colleagues delivered oxytocin to the brains (specifically, the left auditory cortexes) of mice with no pups of their own, they responded like mothers themselves! Those childless mice quickly learned to perk up and fetch pups in distress, returning them to the safety of their nests.

Marlin says her interest in neuroscience arose from her experiences growing up in a foster family. She witnessed some of her foster brothers and sisters struggling with school and learning. As an undergraduate at Saint John’s University in Queens, NY, she earned a dual bachelor’s degree in Biology and Adolescent Education before getting her license to teach 6th through 12th grade Biology. But Marlin soon decided she could have a greater impact by studying how the brain works and gaining a better understanding of the biological mechanisms involved in learning, whether in the classroom or through life experiences, such as motherhood.

Marlin welcomes the opportunity that the lab gives her to “be an explorer”—to ask deep, even ethereal, questions and devise experiments aimed at answering them. “That’s the beauty of science and research,” she says. “To be able to do that the rest of my life? I’d be very happy.”

References:

[1] Oxytocin enables maternal behaviour by balancing cortical inhibition. Marlin BJ, Mitre M, D’amour JA, Chao MV, Froemke RC. Nature. 2015 Apr 23;520(7548):499-504.

Links:

LabTV

Froemke Lab (NYU Langone)

Science Careers (National Institute of General Medical Sciences/NIH)

Careers Blog (Office of Intramural Training/NIH)

Scientific Careers at NIH

 


Sound Advice: High School Music Training Sharpens Language Skills

Posted on by

Band InstrumentsWhen children enter the first grade, their brains are primed for learning experiences, significantly more so, in fact, than adult brains. For instance, scientists have documented that musical training during grade school produces a signature set of benefits for the brain and for behavior—benefits that can last a lifetime, whether or not people continue to play music.

Now, researchers at Northwestern University, Evanston, IL, have some good news for teenagers who missed out on learning to play musical instruments as young kids. Even when musical training isn’t started until high school, it produces meaningful changes in how the brain processes sound. And those changes have positive benefits not only for a teen’s musical abilities, but also for skills related to reading and writing.


Anxiety Reduction: Exploring the Role of Cannabinoid Receptors

Posted on by

Green and blue swirls

Caption: Cannabinoid receptor 1 (green) in the mouse brain. All cell nuclei appear blue.
Credit: Margaret Davis, National Institute on Alcohol Abuse and Alcoholism, NIH

Relief of anxiety and stress is one of the most common reasons that people give for using marijuana [1]. But the scientific evidence is rather sparse about whether there’s a biological explanation for that effect.

More than a decade ago, researchers set out to explore the link between marijuana and anxiety reduction, but the results of their experiments were inconclusive [2]. Recently, a team led by NIH-funded researchers at Vanderbilt University Medical Center in Nashville decided to tackle the question again, this time using more sensitive tools that have just become available in recent years.


Previous Page