Skip to main content

Dr. Francis Collins

Fighting Cancer with Natural Killer Cells

Posted on by

GIF of immune cells attacking

Credit: Michele Ardolino, University of Ottawa, and Brian Weist, Gilead Sciences, Foster City, CA

Cancer immunotherapies, which enlist a patient’s own immune system to attack and shrink developing tumors, have come a long way in recent years, leading in some instances to dramatic cures of widely disseminated cancers. But, as this video highlights, new insights from immunology are still being revealed that may provide even greater therapeutic potential.

Our immune system comes equipped with all kinds of specialized cells, including the infection-controlling Natural Killer (NK) cells. The video shows an army of NK cells (green) attacking a tumor in a mouse (blood vessels, blue) treated with a well-established type of cancer immunotherapy known as a checkpoint inhibitor. What makes the video so interesting is that researchers didn’t think checkpoint inhibitors could activate NK cells.


A New Piece of the Alzheimer’s Puzzle

Posted on by

A couple enjoying a hot drink

Credit: National Institute on Aging, NIH

For the past few decades, researchers have been busy uncovering genetic variants associated with an increased risk of Alzheimer’s disease (AD) [1]. But there’s still a lot to learn about the many biological mechanisms that underlie this devastating neurological condition that affects as many as 5 million Americans [2].

As an example, an NIH-funded research team recently found that AD susceptibility may hinge not only upon which gene variants are present in a person’s DNA, but also how RNA messages encoded by the affected genes are altered to produce proteins [3]. After studying brain tissue from more than 450 deceased older people, the researchers found that samples from those with AD contained many more unusual RNA messages than those without AD.


Using Frogs to Tackle Kidney Problems

Posted on by

Cilia

Credit: Vanja Krneta-Stankic and Rachel K. Miller, University of Texas Health Science Center at Houston

Many human cells are adorned with hair-like projections called cilia. Scientists now realize that these specialized structures play many important roles throughout the body, including directing or sensing various signals such as fluid flow. Their improper function has been linked to a wide range of health conditions, such as kidney disease, scoliosis, and obesity.

Studying cilia in people can be pretty challenging. It’s less tricky in a commonly used model organism: Xenopus laevis, or the African clawed frog. This image highlights a healthy patch of motile cilia (yellow) on embryonic skin cells (red) of Xenopus laevis. The cilia found in humans and all other vertebrates are built from essentially the same elongated structures known as microtubules. That’s why researchers can learn a lot about human cilia by studying frogs.


2018 Warren Alpert Foundation Prize Symposium

Posted on by

I was deeply honored to be among the five recipients of the 2018 Warren Alpert Foundation Prize. All five recipients were recognized for their discoveries in contributing to the development of life-altering treatments for cystic fibrosis (CF). The other recipients were: Paul Negulescu, Vertex Pharmaceuticals, Boston; Bonnie Ramsey, University of Washington School of Medicine and Seattle Children’s Research Institute; Lap-Chee Tsui, The Academy of Sciences of Hong Kong; Michael Welsh, University of Iowa, Iowa City. We were recognized at an afternoon symposium titled Cystic Fibrosis: From Gene Discovery to Basic Biology to Precision Medicines. The symposium was held at Harvard Medical School, Boston, on October 4, 2018. The video posted here shows my presentation that afternoon. But if you would like to see more, there is a full video of this fantastic symposium.


How to Make Biopharmaceuticals Quickly in Small Batches

Posted on by

Diagram showing three components of InSCyT system

Caption: InSCyT system. Image shows (1) production module, (2) purification module, and (3) formulation module.
Credit: Felice Frankel Daniloff, Massachusetts Institute of Technology, Cambridge

Today, vaccines and other protein-based biologic drugs are typically made in large, dedicated manufacturing facilities. But that doesn’t always fit the need, and it could one day change. A team of researchers has engineered a miniaturized biopharmaceutical “factory” that could fit on a dining room table and produce hundreds to thousands of doses of a needed treatment in about three days.

As published recently in the journal Nature Biotechnology, this on-demand manufacturing system is called Integrated Scalable Cyto-Technology (InSCyT). It is fully automated and can be readily reconfigured to produce virtually any approved or experimental vaccine, hormone, replacement enzyme, antibody, or other biopharmaceutical. With further improvements and testing, InSCyT promises to give researchers and health care providers easy access to specialty biologics needed to treat rare diseases, as well as treatments for combating infectious disease outbreaks in remote towns or villages around the globe.


Next Page