Skip to main content

344 Search Results for "treatment"

Mapping Which Coronavirus Variants Will Resist Antibody Treatments

Posted on by

Antibodies Binding to RBD
Caption: The antibody LY-CoV016 (purple) is bound to RBD. This “escape map” indicates where in the viral RBD new mutations are most likely to make LY-CoV016 less effective (red). It also shows places where mutations are least likely to affect antibody binding (white) and where mutations can’t persist because they’d disrupt RBD’s ability to function (gray). Credit: Adapted from TN Starr, Science, 2021.

You may have heard about the new variants of SARS-CoV-2—the coronavirus that causes COVID-19—that have appeared in other parts of the world and have now been detected in the United States. These variants, particularly one called B.1.351 that was first identified in South Africa, have raised growing concerns about the extent to which their mutations might help them evade current antibody treatments and highly effective vaccines.

While researchers take a closer look, it’s already possible in the laboratory to predict which mutations will help SARS-CoV-2 evade our therapies and vaccines, and even to prepare for the emergence of new mutations before they occur. In fact, an NIH-funded study, which originally appeared as a bioRxiv pre-print in November and was recently peer-reviewed and published in Science, has done exactly that. In the study, researchers mapped all possible mutations that would allow SARS-CoV-2 to resist treatment with three different monoclonal antibodies developed for treatment of COVID-19 [1].

The work, led by Jesse Bloom, Allison Greaney, and Tyler Starr, Fred Hutchinson Cancer Center, Seattle, focused on the receptor binding domain (RBD), a key region of the spike protein that studs SARS-CoV-2’s outer surface. The virus uses RBD to anchor itself to the ACE2 receptor of human cells before infecting them. That makes the RBD a prime target for the antibodies that our bodies generate to defend against the virus.

In the new study, researchers used a method called deep mutational scanning to find out which mutations positively or negatively influence the RBD from being able to bind to ACE2 and/or thwart antibodies from striking their target. Here’s how it works: Rather than waiting for new mutations to arise, the researchers created a library of RBD fragments, each of which contained a change in a single nucleotide “letter” that would alter the spike protein’s shape and/or function by swapping one amino acid for another. It turns out that there are more than 3,800 such possible mutations, and Bloom’s team managed to make all but a handful of those versions of the RBD fragment.

The team then used a standard laboratory approach to measure systematically how each of those single-letter typos altered RBD’s ability to bind ACE2 and infect human cells. They also measured how those changes affected three different therapeutic antibodies from recognizing and binding to the viral RBD. Those antibodies include two developed by Regeneron (REGN10933 and REGN10987), which have been granted emergency use authorization for treatment of COVID-19 together as a cocktail called REGN-COV2. They also looked at an antibody developed by Eli Lilly (LY-CoV016), which is now in phase 3 clinical trials for treating COVID-19.

Based on the data, the researchers created four mutational maps for SARS-CoV-2 to escape each of the three therapeutic antibodies, as well as for the REGN-COV2 cocktail. Their studies show most of the mutations that would allow SARS-CoV-2 to escape treatment differed between the two Regeneron antibodies. That’s encouraging because it indicates that the virus likely needs more than one mutation to become resistant to the REGN-COV2 cocktail. However, it appears there’s one spot where a single mutation could allow the virus to resist REGN-COV2 treatment.

The escape map for LY-CoV016 similarly showed a number of mutations that could allow the virus to escape. Importantly, while some of those changes might impair the virus’s ability to cause infection, most of them appeared to come at little to no cost to the virus to reproduce.

How do these laboratory data relate to the real world? To begin to explore this question, the researchers teamed up with Jonathan Li, Brigham and Women’s Hospital, Boston. They looked at an immunocompromised patient who’d had COVID-19 for an unusually long time and who was treated with the Regeneron cocktail for 145 days, giving the virus time to replicate and acquire new mutations.

Viral genome data from the infected patient showed that these maps can indeed be used to predict likely paths of viral evolution. Over the course of the antibody treatment, SARS-CoV-2 showed changes in the frequency of five mutations that would change the makeup of the spike protein and its RBD. Based on the newly drawn escape maps, three of those five are expected to reduce the efficacy of REGN10933. One of the others is expected to limit binding by the other antibody, REGN10987.

The researchers also looked to data from all known circulating SARS-CoV-2 variants as of Jan. 11, 2021, for evidence of escape mutations. They found that a substantial number of mutations with potential to allow escape from antibody treatment already are present, particularly in parts of Europe and South Africa.

However, it’s important to note that these maps reflect just three important antibody treatments. Bloom says they’ll continue to produce maps for other promising therapeutic antibodies. They’ll also continue to explore where changes in the virus could allow for escape from the more diverse set of antibodies produced by our immune system after a COVID-19 infection or vaccination.

While it’s possible some COVID-19 vaccines may offer less protection against some of these new variants—and recent results have suggested the AstraZeneca vaccine may not provide much protection against the South African variant, there’s still enough protection in most other current vaccines to prevent serious illness, hospitalization, and death. And the best way to keep SARS-CoV-2 from finding new ways to escape our ongoing efforts to end this terrible pandemic is to double down on whatever we can do to prevent the virus from multiplying and spreading in the first place.

For now, emergence of these new variants should encourage all of us to take steps to slow the spread of SARS-CoV-2. That means following the three W’s: Wear a mask, Watch your distance, Wash your hands often. It also means rolling up our sleeves to get vaccinated as soon as the opportunity arises.

Reference:

[1] Prospective mapping of viral mutations that escape antibodies used to treat COVID-19.
Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS, Li JZ, Bloom JD.
Science. 2021 Jan 25:eabf9302.

Links:

COVID-19 Research (NIH)

Bloom Lab (Fred Hutchinson Cancer Center, Seattle)

NIH Support: National Institute of Allergy and Infectious Diseases


Charting a Rapid Course Toward Better COVID-19 Tests and Treatments

Posted on by

Point of care anti
Credit: Quidel; iStock/xavierarnau

It is becoming apparent that our country is entering a new and troubling phase of the pandemic as SARS-CoV-2, the novel coronavirus that causes COVID-19, continues to spread across many states and reaches into both urban and rural communities. This growing community spread is hard to track because up to 40 percent of infected people seem to have no symptoms. They can pass the virus quickly and unsuspectingly to friends and family members who might be more vulnerable to becoming seriously ill. That’s why we should all be wearing masks when we go out of the house—none of us can be sure we’re not that asymptomatic carrier of the virus.

This new phase makes fast, accessible, affordable diagnostic testing a critical first step in helping people and communities. In recognition of this need, NIH’s Rapid Acceleration of Diagnostics (RADx) initiative, just initiated in late April, has issued an urgent call to the nation’s inventors and innovators to develop fast, easy-to-use tests for SARS-CoV-2, the novel coronavirus that causes COVID-19. It brought a tremendous response, and NIH selected about 100 of the best concepts for an intense one-week “shark-tank” technology evaluation process.

Moving ahead at an unprecedented pace, NIH last week announced the first RADx projects to come through the deep dive with flying colors and enter the scale-up process necessary to provide additional rapid testing capacity to the U.S. public. As part of the RADx initiative, seven biomedical technology companies will receive a total of $248.7 million in federal stimulus funding to accelerate their efforts to scale up new lab-based and point-of-care technologies.

Four of these projects will aim to bolster the nation’s lab-based COVID-19 diagnostics capacity by tens of thousands of tests per day as soon as September and by millions by the end of the year. The other three will expand point-of-care testing for COVID-19, making results more rapidly and readily available in doctor’s offices, urgent care clinics, long-term care facilities, schools, child care centers, or even at home.

This is only a start, and we expect that more RADx projects will advance in the coming months and begin scaling up for wide-scale use. In the meantime, here’s an overview of the first seven projects developed through the initiative, which NIH is carrying out in partnership with the Office of the Assistant Secretary of Health, the Biomedical Advanced Research and Development Authority, and the Department of Defense:

Point-of-Care Testing Approaches

Mesa Biotech. Hand-held testing device detects the genetic material of SARS-CoV-2. Results are read from a removable, single-use cartridge in 30 minutes.

Quidel. Test kit detects protein (viral antigen) from SARS-CoV-2. Electronic analyzers provide results within 15 minutes. The U.S. Department of Health and Human Service has identified this technology for possible use in nursing homes.

Talis Biomedical. Compact testing instrument uses a multiplexed cartridge to detect the genetic material of SARS-CoV-2 through isothermal amplification. Optical detection system delivers results in under 30 minutes.

Lab-based Testing Approaches

Ginkgo Bioworks. Automated system uses next-generation sequencing to scan patient samples for SARS-CoV-2’s genetic material. This system will be scaled up to make it possible to process tens of thousands of tests simultaneously and deliver results within one to two days. The company’s goal is to scale up to 50,000 tests per day in September and 100,000 per day by the end of 2020.

Helix OpCo. By combining bulk shipping of test kits and patient samples, automation, and next-generation sequencing of genetic material, the company’s goal is to process up to 50,000 samples per day by the end of September and 100,000 per day by the end of 2020.

Fluidigm. Microfluidics platform with the capacity to process thousands of polymerase chain reaction (PCR) tests for SARS-CoV-2 genetic material per day. The company’s goal is to scale up this platform and deploy advanced integrated fluidic chips to provide tens to hundreds of thousands of new tests per day in the fall of 2020. Most tests will use saliva.

Mammoth Biosciences. System uses innovative CRISPR gene-editing technology to detect key pieces of SARS-CoV-2 genetic material in patient samples. The company’s goal is to provide a multi-fold increase in testing capacity in commercial laboratories.

At the same time, on the treatment front, significant strides continue to be made by a remarkable public-private partnership called Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV). Since its formation in May, the partnership, which involves 20 biopharmaceutical companies, academic experts, and multiple federal agencies, has evaluated hundreds of therapeutic agents with potential application for COVID-19 and prioritized the most promising candidates.

Among the most exciting approaches are monoclonal antibodies (mAbs), which are biologic drugs derived from neutralizing antibodies isolated from people who’ve survived COVID-19. This week, the partnership launched two trials (one for COVID-19 inpatients, the other for COVID-19 outpatients) of a mAB called LY-CoV555, which was developed by Eli Lilly and Company, Indianapolis, IN. It was discovered by Lilly’s development partner AbCellera Biologics Inc. Vancouver, Canada, in collaboration with the NIH’s National Institute of Allergy and Infectious Diseases (NIAID). In addition to the support from ACTIV, both of the newly launched studies also receive support for Operation Warp Speed, the government’s multi-agency effort against COVID-19.

LY-CoV555 was derived from the immune cells of one of the very first survivors of COVID-19 in the United States. It targets the spike protein on the surface of SARS-CoV-2, blocking it from attaching to human cells.

The first trial, which will look at both the safety and efficacy of the mAb for treating COVID-19, will involve about 300 individuals with mild to moderate COVID-19 who are hospitalized at facilities that are part of existing clinical trial networks. These volunteers will receive either an intravenous infusion of LY-CoV555 or a placebo solution. Five days later, their condition will be evaluated. If the initial data indicate that LY-CoV555 is safe and effective, the trial will transition immediately—and seamlessly—to enrolling an additional 700 participants with COVID-19, including some who are severely ill.

The second trial, which will evaluate how LY-CoV555 affects the early course of COVID-19, will involve 220 individuals with mild to moderate COVID-19 who don’t need to be hospitalized. In this study, participants will randomly receive either an intravenous infusion of LY-CoV555 or a placebo solution, and will be carefully monitored over the next 28 days. If the data indicate that LY-CoV555 is safe and shortens the course of COVID-19, the trial will then enroll an additional 1,780 outpatient volunteers and transition to a study that will more broadly evaluate its effectiveness.

Both trials are later expected to expand to include other experimental therapies under the same master study protocol. Master protocols allow coordinated and efficient evaluation of multiple investigational agents at multiple sites as the agents become available. These protocols are designed with a flexible, rapidly responsive framework to identify interventions that work, while reducing administrative burden and cost.

In addition, Lilly this week started a separate large-scale safety and efficacy trial to see if LY-CoV555 can be used to prevent COVID-19 in high-risk residents and staff at long-term care facilities. The study isn’t part of ACTIV.

NIH-funded researchers have been extremely busy over the past seven months, pursuing every avenue we can to detect, treat, and, ultimately, end this devasting pandemic. Far more work remains to be done, but as RADx and ACTIV exemplify, we’re making rapid progress through collaboration and a strong, sustained investment in scientific innovation.

Links:

Coronavirus (COVID-19) (NIH)

Rapid Acceleration of Diagnostics (RADx)

Video: NIH RADx Delivering New COVID-19 Testing Technologies to Meet U.S. Demand (YouTube)

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV)

Explaining Operation Warp Speed (U.S. Department of Health and Human Resources/Washington, D.C.)

NIH delivering new COVID-19 testing technologies to meet U.S. demand,” NIH news release,” July 31, 2020.

NIH launches clinical trial to test antibody treatment in hospitalized COVID-19 patients,” NIH new release, August 4, 2020.

NIH clinical trial to test antibodies and other experimental therapeutics for mild and moderate COVID-19,” NIH news release, August 4, 2020.


Exploring Drug Repurposing for COVID-19 Treatment

Posted on by

Drug screening-High throughput robot
Caption: Robotic technology screening existing drugs for new purposes. Credit: Scripps Research

It usually takes more than a decade to develop a safe, effective anti-viral therapy. But, when it comes to coronavirus disease 2019 (COVID-19), we don’t have that kind of time. One way to speed the process may be to put some old drugs to work against this new disease threat. This is generally referred to as “drug repurposing.”

NIH has been doing everything possible to encourage screens of existing drugs that have been shown safe for human use. In a recent NIH-funded study in the journal Nature, researchers screened a chemical “library” that contained nearly 12,000 existing drug compounds for their potential activity against SARS-CoV-2, the novel coronavirus that causes COVID-19 [1]. The results? In tests in both non-human primate and human cell lines grown in laboratory conditions, 21 of these existing drugs showed potential for repurposing to thwart the novel coronavirus—13 of them at doses that likely could be safely given to people. The majority of these drugs have been tested in clinical trials for use in HIV, autoimmune diseases, osteoporosis, and other conditions.

These latest findings come from an international team led by Sumit Chanda, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA. The researchers took advantage of a small-molecule drug library called ReFRAME [2], which was created in 2018 by Calibr, a non-profit drug discovery division of Scripps Research, La Jolla, CA.

In collaboration with Yuen Kwok-Yung’s team at the University of Hong Kong, the researchers first developed a high-throughput method that enabled them to screen rapidly each of the 11,987 drug compounds in the ReFRAME library for their potential to block SARS-CoV-2 in cells grown in the lab. The first round of testing narrowed the list of possible COVID-19 drugs to about 300. Next, using lower concentrations of the drugs in cells exposed to a second strain of SARS-CoV-2, they further narrowed the list to 100 compounds that could reliably limit growth of the coronavirus by at least 40 percent.

Generally speaking, an effective anti-viral drug is expected to show greater activity as its concentration is increased. So, Chanda’s team then tested those 100 drugs for evidence of such a dose-response relationship. Twenty-one of them passed this test. This group included remdesivir, a drug originally developed for Ebola virus disease and recently authorized by the U.S. Food and Drug Administration (FDA) for emergency use in the treatment of COVID-19. Remdesivir could now be considered a positive control.

These findings raised another intriguing question: Could any of the other drugs with a dose-response relationship work well in combination with remdesivir to block SARS-CoV-2 infection? Indeed, the researchers found that four of them could.

Further study showed that some of the most promising drugs on the list reduced the number of SARS-CoV-2 infected cells by 65 to 85 percent. The most potent of these was apilimod, a drug that has been evaluated in clinical trials for treating Crohn’s disease, rheumatoid arthritis, and other autoimmune conditions. Apilimod is now being evaluated in the clinic for its ability to prevent the progression of COVID-19. Another potential antiviral to emerge from the study is clofazimine, a 70-year old FDA-approved drug that is on the World Health Organization’s list of essential medicines for the treatment of leprosy.

Overall, the findings suggest that there may be quite a few existing drugs and/or experimental drugs fairly far along in the development pipeline that have potential to be repurposed for treating COVID-19. What’s more, some of them might also work well in combination with remdesivir, or perhaps other drugs, as treatment “cocktails,” such as those used to successfully treat HIV and hepatitis C.

This is just one of a wide variety of drug screening efforts that are underway, using different libraries and different assays to detect activity against SARS-CoV-2. The NIH’s National Center for Advancing Translational Sciences has established an open data portal to collect all of these data as quickly and openly as possible. As NIH continues its efforts to use the power of science to end the COVID-19 pandemic, it is critically important that we explore as many avenues as possible for developing diagnostics, treatments, and vaccines.

References:

[1] Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Riva L, Yuan S, Yin X, et al. Nature. 2020 Jul 24 [published online ahead of print]

[2] The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Janes J, Young ME, Chen E, et al. Proc Natl Acad Sci USA. 2018;115(42):10750-10755.

Links:

Coronavirus (COVID-19) (NIH)

ReFRAMEdb (Scripps Research, La Jolla, CA)

The Chanda Lab (Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA)

Yuen Kwok-Yung (University of Hong Kong)

OpenData|Covid-19 (National Center for Advancing Translational Sciences/NIH)

NIH Support: National Institute of Allergy and Infectious Diseases; National Institute of General Medical Sciences


After Opioid Overdose, Most Young People Aren’t Getting Addiction Treatment

Posted on by

Teenager's support
Credit: iStock/KatarzynaBialasiewicz

Drug overdoses continue to take far too many lives, driven primarily by the opioid crisis (though other drugs, such as methamphetamine and cocaine, are also major concerns). While NIH’s Helping to End Addiction Long-term (HEAL) Initiative is taking steps to address this terrible crisis, new findings serve as another wake-up call that young people battling opioid addiction need a lot more assistance to get back on the right track.

In a study of more than 3,600 individuals, aged 13-22, who survived an opioid overdose, an NIH-funded team found that only about one-third received any kind of follow-up addiction treatment [1]. Even more troubling, less than 2 percent of these young people received the gold standard approach of medication treatment.

The findings reported in JAMA Pediatrics come from Rachel Alinsky, an adolescent medicine and addiction medicine fellow at Johns Hopkins Children’s Center, Baltimore. She saw first-hand the devastating toll that opioids are taking on our youth.

Alinsky also knew that nationally more than 4,000 fatal opioid overdoses occurred in people between the ages of 15 and 24 in 2016 [2]. Likewise, rates of nonfatal opioid overdoses for teens and young adults also have been escalating, leading to more than 7,000 hospitalizations and about 28,000 emergency department visits in 2015 alone [3].

In the latest study, Alinsky wanted to find out whether young people who overdose receive timely treatment to help prevent another life-threatening emergency. According to our best evidence-based guidelines, timely treatment for youth with an opioid addiction should include medication, ideally along with behavioral interventions.

That’s because opioid addiction rewires the brain—will power alone is simply not sufficient to achieve and sustain recovery. After one overdose, the risk of dying from another one rises dramatically. So, it is critical to get those who survived an overdose into effective treatment right away.

Alinsky and her team dove into the best-available dataset, consisting of data on more than 4 million mostly low-income adolescents and young adults who’d been enrolled in Medicaid for at least six months in 16 states. The sample included 3,606 individuals who’d been seen by a doctor and diagnosed with opioid poisoning. A little over half of them were female; most were non-Hispanic whites.

Heroin accounted for about a quarter of those overdoses. The rest involved other opioids, most often prescription painkillers. However, the researchers note that some overdoses attributed to heroin might have been caused by the powerful synthetic opioid fentanyl. The use of fentanyl, often mixed with heroin, was on the rise in the study’s final years, but it was rarely included in drug tests at the time.

Less than 20 percent of young people in the sample received a diagnosis of opioid use disorder, or a problematic pattern of opioid use resulting in impairment or distress. What’s more, in the month following an overdose, few received the current standard for addiction treatment, which should include behavioral therapy and treatment with one of three drugs: buprenorphine, naltrexone, or methadone.

Drilling a little deeper into the study’s findings:

• 68.9 percent did not receive addiction treatment of any kind.
• 29.3 percent received behavioral health services alone.
• Only 1.9 percent received one of three approved medications for opioid use disorder.

It’s been estimated previously that teens and young adults are one-tenth as likely as adults 25 years and older to get the recommended treatment for opioid use disorder [4]. How can that be? The researchers suggest that one factor might be inexperience among pediatricians in diagnosing and treating opioid addiction. They also note that, even when the problem is recognized, doctors sometimes struggle to take the next step and connect young people with addiction treatment facilities that are equipped to provide the needed treatment to adolescents.

As this new study shows, interventions designed to link teens and young adults with the needed recovery treatment and care are desperately needed. As we continue to move forward in tackling this terrible crisis through the NIH’s HEAL Initiative and other efforts, finding ways to overcome such systemic barriers and best engage our youth in treatment, including medication, will be essential.

References:

[1] Receipt of addiction treatment after opioid overdose among Medicaid-enrolled adolescents and young adults. Alinsky RH, Zima BT, Rodean J, Matson PA, Larochelle MR, Adger H Jr, Bagley SM, Hadland SE. JAMA Pediatr. 2020 Jan 6:e195183.

[2] Overdose death rates. National Institute on Drug Abuse, NIH.

[3] 2018 annual surveillance drug-related risks and outcomes—United States: surveillance special report. Centers for Disease Control and Prevention.

[4] Medication-assisted treatment for adolescents in specialty treatment for opioid use disorder. Feder KA, Krawczyk N, Saloner B. J Adolesc Health. 2017 Jun;60(6):747-750.

Links:

Opioid Overdose Crisis (National Institute on Drug Abuse/NIH)

Opioid Overdose (Centers for Disease Control and Prevention, Atlanta)

Decisions in Recovery: Treatment for Opioid Use Disorder (Substance Abuse and Mental Health Services Administration, Rockville, MD)

Rachel Alinsky (Johns Hopkins University Children’s Center, Baltimore)

Helping to End Addiction Long-term (HEAL) Initiative (NIH)

NIH Support: Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institute on Drug Abuse


Moving Closer to a Stem Cell-Based Treatment for AMD

Posted on by

In recent years, researchers have figured out how to take a person’s skin or blood cells and turn them into induced pluripotent stem cells (iPSCs) that offer tremendous potential for regenerative medicine. Still, it’s been a challenge to devise safe and effective ways to move this discovery from the lab into the clinic. That’s why I’m pleased to highlight progress toward using iPSC technology to treat a major cause of vision loss: age-related macular degeneration (AMD).

In the new work, researchers from NIH’s National Eye Institute developed iPSCs from blood-forming stem cells isolated from blood donated by people with advanced AMD [1]. Next, these iPSCs were exposed to a variety of growth factors and placed on supportive scaffold that encouraged them to develop into healthy retinal pigment epithelium (RPE) tissue, which nurtures the light-sensing cells in the eye’s retina. The researchers went on to show that their lab-grown RPE patch could be transplanted safely into animal models of AMD, preventing blindness in the animals.

This preclinical work will now serve as the foundation for a safety trial of iPSC-derived RPE transplants in 12 human volunteers who have already suffered vision loss due to the more common “dry” form of AMD, for which there is currently no approved treatment. If all goes well, the NIH-led trial may begin enrolling patients as soon as this year.

Risk factors for AMD include a combination of genetic and environmental factors, including age and smoking. Currently, more than 2 million Americans have vision-threatening AMD, with millions more having early signs of the disease [2].

AMD involves progressive damage to the macula, an area of the retina about the size of a pinhead, made up of millions of light-sensing cells that generate our sharp, central vision. Though the exact causes of AMD are unknown, RPE cells early on become inflamed and lose their ability to clear away debris from the retina. This leads to more inflammation and progressive cell death.

As RPE cells are lost during the “dry” phase of the disease, light-sensing cells in the macula also start to die and reduce central vision. In some people, abnormal, leaky blood vessels will form near the macula, called “wet” AMD, spilling fluid and blood under the retina and causing significant vision loss. “Wet” AMD has approved treatments. “Dry” AMD does not.

But, advances in iPSC technology have brought hope that it might one day be possible to shore up degenerating RPE in those with dry AMD, halting the death of light-sensing cells and vision loss. In fact, preliminary studies conducted in Japan explored ways to deliver replacement RPE to the retina [3]. Though progress was made, those studies highlighted the need for more reliable ways to produce replacement RPE from a patient’s own cells. The Japanese program also raised concerns that iPSCs derived from people with AMD might be prone to cancer-causing genomic changes.

With these challenges in mind, the NEI team led by Kapil Bharti and Ruchi Sharma have designed a more robust process to produce RPE tissue suitable for testing in people. As described in Science Translational Medicine, they’ve come up with a three-step process.

Rather than using fibroblast cells from skin as others had done, Bharti and Sharma’s team started with blood-forming stem cells from three AMD patients. They reprogrammed those cells into “banks” of iPSCs containing multiple different clones, carefully screening them to ensure that they were free of potentially cancer-causing changes.

Next, those iPSCs were exposed to a special blend of growth factors to transform them into RPE tissue. That recipe has been pursued by other groups for a while, but needed to be particularly precise for this human application. In order for the tissue to function properly in the retina, the cells must assemble into a uniform sheet, just one-cell thick, and align facing in the same direction.

So, the researchers developed a specially designed scaffold made of biodegradable polymer nanofibers. That scaffold helps to ensure that the cells orient themselves correctly, while also lending strength for surgical transplantation. By spreading a single layer of iPSC-derived RPE progenitors onto their scaffolds and treating it with just the right growth factors, the researchers showed they could produce an RPE patch ready for the clinic in about 10 weeks.

To test the viability of the RPE patch, the researchers first transplanted a tiny version (containing about 2,500 RPE cells) into the eyes of a rat with a compromised immune system, which enables human cells to survive. By 10 weeks after surgery, the human replacement tissue had integrated into the animals’ retinas with no signs of toxicity.

Next, the researchers tested a larger RPE patch (containing 70,000 cells) in pigs with an AMD-like condition. This patch is the same size the researchers ultimately would expect to use in people. Ten weeks after surgery, the RPE patch had integrated into the animals’ eyes, where it protected the light-sensing cells that are so critical for vision, preventing blindness.

These results provide encouraging evidence that the iPSC approach to treating dry AMD should be both safe and effective. But only a well-designed human clinical trial, with all the appropriate prior oversights to be sure the benefits justify the risks, will prove whether or not this bold approach might be the solution to blindness faced by millions of people in the future.

As the U.S. population ages, the number of people with advanced AMD is expected to rise. With continued progress in treatment and prevention, including iPSC technology and many other promising approaches, the hope is that more people with AMD will retain healthy vision for a lifetime.

References:

[1] Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, Li Y, Stoddard J, Stankewicz C, Wan Q, Zhang C, Campos MM, Miyagishima KJ, McGaughey D, Villasmil R, Mattapallil M, Stanzel B, Qian H, Wong W, Chase L, Charles S, McGill T, Miller S, Maminishkis A, Amaral J, Bharti K. Sci Transl Med. 2019 Jan 16;11(475).

[2] Age-Related Macular Degeneration, National Eye Institute.

[3] Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Takasu N, Ogawa S, Yamanaka S, Takahashi M, et al. N Engl J Med. 2017 Mar 16;376(11):1038-1046.

Links:

Facts About Age-Related Macular Degeneration (National Eye Institute/NIH)

Stem Cell-Based Treatment Used to Prevent Blindness in Animal Models of Retinal Degeneration (National Eye Institute/NIH)

Kapil Bharti (NEI)

NIH Support: National Eye Institute; Common Fund


Next Page