Skip to main content

87 Search Results for "long covid"

Predicting ‘Long COVID Syndrome’ with Help of a Smartphone App

Posted on by

Zoe COVID Sympton Study Tracker app
Credit: Zoe Global

As devastating as this pandemic has been, it’s truly inspiring to see the many innovative ways in which researchers around the world have enlisted the help of everyday citizens to beat COVID-19. An intriguing example is the COVID Symptom Study’s smartphone-based app, which already has been downloaded millions of times, mostly in the United States and United Kingdom. Analyzing data from 2.6 million app users, researchers published a paper last summer showing that self-reported symptoms can help to predict infection with SARS-CoV-2, the coronavirus that causes COVID-19 [1].

New work from the COVID Symptom Study now takes advantage of the smartphone app to shed more light on Long COVID Syndrome [2], in which people experience a constellation of symptoms long past the time that they’ve recovered from the initial stages of COVID-19 illness. Such symptoms, which can include fatigue, shortness of breath, “brain fog,” sleep disorders, fevers, gastrointestinal symptoms, anxiety, and depression, can persist for months and can range from mild to incapacitating

This latest findings, published in the journal Nature Medicine, come from a team led by Claire Steves and Tim Spector, King’s College London, and their colleagues, and that includes NIH grantee Andrew Chan, Massachusetts General Hospital, Boston, and others supported by the Massachusetts Consortium on Pathogen Readiness. The team began by looking at data recorded between March 24-Sept. 2, 2020 from about 4.2 million app users with an average age of 45, about 90 percent of whom lived in the U.K., with smaller numbers from the U.S. and Sweden.

For this particular study, the researchers decided to focused on 4,182 app users, all with confirmed COVID-19, who had consistently logged in their symptoms. Because these individuals also started using the app when they still felt physically well, the researchers could assess their COVID-19-associated symptoms over the course of the illness.

While most people who developed COVID-19 were back to normal in less than two weeks, the data suggest that one in 20 people with COVID-19 are likely to suffer symptoms of Long COVID that persist for eight weeks or more. About one in 50 people continued to have symptoms for 12 weeks or more. That suggests Long COVID could potentially affect many hundreds of thousands of people in the U.K. alone and millions more worldwide.

The team found that the individuals most likely to develop Long COVID were older people, women, and especially those who experienced five or more symptoms. The nature and order of symptoms, which included fatigue, headache, shortness of breath, and loss of smell, didn’t matter. People with asthma also were more likely to develop long-lasting symptoms, although the study found no clear links to any other pre-existing health conditions.

Using this information, the researchers developed a model to predict which individuals were most likely to develop Long COVID. Remarkably, this simple algorithm—based on age, gender, and number of early symptoms–accurately predicted almost 70 percent of cases of Long COVID. It was also about 70 percent effective in avoiding false alarms.

The team also validated the algorithm’s predictive ability in data from an independent group of 2,472 people with confirmed COVID-19 and a range of symptoms. In this group, having more than five symptoms within the first week also proved to be the strongest predictor of Long COVID. And, again, the model worked quite well in identifying those most likely to develop Long COVID.

These findings come as yet another important reminder of the profound impact of the COVID-19 pandemic on public health. This includes not only people who are hospitalized with severe COVID-19 but, all too often, those who get through the initial period of infection relatively unscathed.

Recently, NIH announced a $1.15 billion investment to identify the causes of Long COVID, to develop ways of treating individuals who don’t fully recover, and, ultimately, to prevent the disorder. We’ve been working diligently in recent weeks to identify the most pressing questions and areas of greatest opportunity to address this growing public health threat. As a first step, NIH is funding an effort to track the recovery paths of at least 40,000 adults and children infected with SARS-CoV-2, to learn more about who develops long-term effects and who doesn’t. If you’d like to find a way to pitch in and help, getting involved in the COVID Symptom Study is as easy as downloading the app.

References:

[1] Real-time tracking of self-reported symptoms to predict potential COVID-19. Menni C, Valdes AM, Freidin MB, Sudre CH, Nguyen LH, Drew DA, Ganesh S, Varsavsky T, Cardoso MJ, El-Sayed Moustafa JS, Visconti A, Hysi P, Bowyer RCE, Mangino M, Falchi M, Wolf J, Ourselin S, Chan AT, Steves CJ, Spector TD. Nat Med. 2020 Jul;26(7):1037-1040. doi: 10.1038/s41591-020-0916-2. Epub 2020 May 11.

[2] Attributes and predictors of long COVID. Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, Pujol JC, Klaser K, Antonelli M, Canas LS, Molteni E, Modat M, Jorge Cardoso M, May A, Ganesh S, Davies R, Nguyen LH, Drew DA, Astley CM, Joshi AD, Merino J, Tsereteli N, Fall T, Gomez MF, Duncan EL, Menni C, Williams FMK, Franks PW, Chan AT, Wolf J, Ourselin S, Spector T, Steves CJ. Nat Med. 2021 Mar 10.

Links:

NIH launches new initiative to study to “Long COVID”. 2021 Feb 23. (NIH)

COVID-19 Research (NIH)

Massachusetts Consortium on Pathogen Readiness (Boston)

COVID Symptom Study

Claire Steves (King’s College London, United Kingdom)

Tim Spector (King’s College London)

Andrew Chan (Massachusetts General Hospital, Boston)

NIH Support: National Institute of Diabetes and Digestive and Kidney Diseases


Trying to Make Sense of Long COVID Syndrome

Posted on by

Credit: NIH

More than 400,000 Americans have now lost their lives to COVID-19. But thousands of others who’ve gotten sick and survived COVID-19 are finding that a full recovery can be surprisingly elusive. Weeks and months after seemingly recovering from even mild cases of COVID-19, many battle a wide range of health problems.

Indeed, new results from the largest global study of this emerging “Long COVID syndrome” highlight just how real and pressing this public health concern really is. The study, reported recently as a pre-print on medRxiv, is based on survey results from more than 3,700 self-described COVID “Long Haulers” in 56 countries [1]. They show nearly half couldn’t work full time six months after unexpectedly developing prolonged symptoms of COVID-19. A small percentage of respondents, thankfully, seemed to have bounced back from brief bouts of Long COVID, though time will tell whether they have fully recovered.

These findings are the second installment from the online Body Politic COVID-19 Support Group and its Patient-Led Research for COVID-19, which consists of citizen scientists with a wide range of expertise in the arts and sciences who are struggling with the prolonged effects of COVID-19 themselves. In an earlier survey, this group provided a first-draft description of Long COVID syndrome, based on the self-reported experiences of 640 respondents.

In the new survey-based study led by Athena Akrami, with Patient-Led Research for COVID-19 and University College London, England, the goal was to characterize the experiences of many more people with Long COVID syndrome. They now define the syndrome as a collection of symptoms lasting for more than 28 days.

This second survey emphasizes the course and severity of more than 200 symptoms over time, including those affecting the heart, lungs, gastrointestinal system, muscles, and joints. It took a particularly in-depth look at neurological and neuropsychiatric symptoms, along with the ability of COVID-19 survivors to return to work and participate in other aspects of everyday life.

The 3,762 individuals who responded to the survey were predominately white females, between the ages of 30 and 60, who lived in the United States. As in the previous survey, the study included adults with symptoms consistent with COVID-19, whether or not the infection had been confirmed by a viral or antibody test. That is a potential weakness of the study, as some of these individuals may have had some other inciting illness. But many of the study’s participants developed symptoms early on in the pandemic, when testing was much more limited than it is now.

More than half never sought hospital care. Only 8 percent said that they’d been admitted to the hospital for COVID-19. And yet, 2,464 respondents reported COVID-19 symptoms lasting six months or longer. Most of the remaining respondents also continued to have symptoms, although they had not yet reached the six-month mark.

Among the most common symptoms were fatigue, worsening of symptoms after physical or mental activity, shortness of breath, trouble sleeping, and “brain fog,” or difficulty thinking clearly. The majority—88 percent—said they coped with some form of cognitive dysfunction or memory loss that to varying degrees affected their everyday lives. That includes the ability to make decisions, have conversations, follow instructions, and drive.

Those who had prolonged symptoms of COVID-19 for more than six months reported contending with about 14 symptoms on average. Most also reported that they’d had a relapse of symptoms, seemingly triggered by exercise, mental activity, or just everyday stress. When surveyed, nearly half of respondents said they’d had to reduce their hours at work due to the severity of their symptoms. Another 22 percent weren’t working at all due to their Long COVID.

The findings show that—even in those people who don’t require hospitalization for severe COVID-19—the condition’s prolonged symptoms are having a major impact on lives and livelihoods, both here and around the world. While the number of people affected isn’t yet known, if even a small proportion of the vast numbers of people infected with COVID-19 develop Long COVID syndrome, it represents a significant public health concern.

Another recent study from China further documents the tendency of COVID-19-related symptoms to linger past the usual recovery time for a respiratory virus [2]. The study, published in Lancet, showed that six months after the onset of illness, more than 75 percent of people hospitalized with COVID-19 in Wuhan between January and May 2020 continued to report at least one symptom. Fatigue, muscle weakness, sleep difficulties, anxiety, and depression all were common. More than half of individuals also had significant persistent lung abnormalities, which were more common in those who’d been more severely ill.

It’s essential for us to learn all we can about how SARS-CoV-2, which is the coronavirus that causes COVID-19, leads to such widespread symptoms. It’s also essential that we develop ways to better treat or prevent these symptoms. The NIH held a workshop last month to summarize what is known and fill in key gaps in our knowledge about Long COVID syndrome, which is clinically known as post-acute sequelae of COVID-19 (PASC). In December, Congress authorized funding for continued research on PASC, including an appropriation of funds for NIH to support continued study of these prolonged health consequences.

As these efforts and others proceed in the coming months, the hope is that we’ll gain much more insight and get some answers soon. And, if you’ve had or are currently experiencing symptoms of COVID-19, there’s still time to share your data by participating in the Patient-Led Research for COVID-19’s second survey.

References:

[1] Characterizing Long COVID in an international cohort: 7 months of symptoms and their impact. David HE et al. Medrxiv. 27 December 27 2020.

[2] 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Huang C, Huang L, et al. Lancet. 2021 Jan 16;397(10270):220-232.

Links:

COVID-19 Research (NIH)

Akrami Lab (Sainsbury Wellcome Center, University College London, England)

Patient-led Research for COVID-19

Video: Workshop on Post-Acute Sequelae of COVID-19 (NIH)


Citizen Scientists Take on the Challenge of Long-Haul COVID-19

Posted on by

Woman frustrated while working
Credit: iStock/Poike

Coronaviruses are a frequent cause of the common cold. Most of us bounce back from colds without any lasting health effects. So, you might think that individuals who survive other infectious diseases caused by coronaviruses—including COVID-19—would also return to normal relatively quickly. While that can be the case for some people, others who’ve survived even relatively mild COVID-19 are experiencing health challenges that may last for weeks or even months. In fact, the situation is so common, that some of these folks have banded together and given their condition a name: the COVID “long-haulers.”

Among the many longer-term health problems that have been associated with COVID-19 are shortness of breath, fatigue, cognitive issues, erratic heartbeat, gastrointestinal issues, low-grade fever, intolerance to physical or mental activity, and muscle and joint pains. COVID-19 survivors report that these symptoms flair up unpredictably, often in different combinations, and can be debilitating for days and weeks at a time. Because COVID-19 is such a new disease, little is known about what causes the persistence of symptoms, what is impeding full recovery, or how to help the long-haulers.

More information is now emerging from the first detailed patient survey of post-COVID syndrome, also known as Long COVID [1]. What’s unique about the survey is that it has been issued by a group of individuals who are struggling with the syndrome themselves. These citizen scientists, who belong to the online Body Politic COVID-19 Support Group, decided to take matters into their own hands. They already had a pretty good grip on what sort of questions to ask, as well as online access to hundreds of long-haulers to whom they could pose the questions.

The citizen scientists’ group, known as the Patient-led Research for COVID-19, brought a lot of talent and creativity to the table. Members reside in the United States, Canada, and England, and none have ever met face to face. But, between their day jobs, managing time differences, and health challenges, each team member spends about 20 hours per week working on their patient-led research, and are now putting the final touches on a follow-up survey that will get underway in the next few weeks.

For their first survey, the group members faced the difficult decision of whom to contact. First, they needed to define long hauler. For that, they decided to target people whose symptoms persisted for more than 2 weeks after their initial recovery from COVID-19. The 640 individuals who responded to the survey were predominately white females between the ages of 30 to 49 who lived in the United States. The members said that the gender bias may stem from women being more likely to join support groups and complete surveys, though there may be a gender component to Long COVID as well. About 10 percent of respondents reported that they had ultimately recovered from this post-COVID syndrome.

Another important issue revolved around COVID-19 testing. Most long-haulers in the online group had gotten sick in March and April, but weren’t so sick that they needed to be hospitalized. Because COVID-19 testing during those months was often limited to people hospitalized with severe respiratory problems, many long-haulers with mild or moderate COVID-like symptoms weren’t tested. Others were tested relatively late in the course of their illness, which can increase the likelihood of false negatives.

The team opted to cast a wide investigative net, concluding that limiting its data to only people who tested positive for COVID-19 might lead to the loss of essential information on long-haulers. It turns out that half of the respondents hadn’t been tested for SARS-CoV-2, the virus that causes COVID-19. The other half was divided almost equally between those who tested positive and those who tested negative. Here are some highlights of the survey’s findings:

Top 10 Symptoms: Respondents were asked to rank their most common symptoms and their relative severity. From highest to lowest, they were: mild shortness of breath, mild tightness of chest, moderate fatigue, mild fatigue, chills or sweats, mild body aches, dry cough, elevated temperature (98.8-100), mild headache, and brain fog/concentration challenges. Highlighting the value of patient-led research, the team was able to assemble an initial list of 62 symptoms that long-haulers often discuss in support groups. The survey revealed common symptoms that have been greatly underreported in the media, such as neurological symptoms. These include brain fog, concentration challenges, and dizziness.

Making a Recovery: Of the 60 respondents who had recovered, the average time to recovery was 27 days. The respondents who had not recovered had managed their symptoms for 40 days on average, with most dealing with health problems for 5 to 7 weeks. The report shows that the chance of full recovery by day 50 is less than 20 percent.

Exercise Capacity: About 65 percent of respondents now consider themselves mostly sedentary. Most had been highly physically active before developing COVID-19. Many long-haulers expressed concern that overexertion causes relapses

Testing. Respondents who reported testing positive for SARS-CoV-2 were tested on average earlier in their illness (by day 10) than those who reported testing negative (by day 16). The team noted that their findings parallel those in a recent published scientific study, which found false-negative rates for current PCR-based assays rose as the time between SARS-CoV-2 infection and testing increased [2]. In that published study, by day 21, the false-negative rate reached 66 percent. Only two symptoms (loss of smell and loss of taste) occurred more frequently in respondents who tested positive; the other 60 symptoms were statistically the same between groups. The citizen scientists speculate that testing is not capturing a subset of COVID patients, and more investigation is required.

Since issuing their survey results on May 11, the team has met with staff from the Centers for Disease Control and Prevention and the World Health Organization. Their work also been mentioned in magazine articles and even cited in some papers published in scientific journals.

In their next survey, these citizen scientists hope to fill in gaps in their first report, including examining antibody testing results, neurological symptoms, and the role of mental health. To increase geographic and demographic diversity, they will also translate the survey into 10 languages. If you’re a COVID-19 long-hauler and would like to find out how to get involved, there’s still time to take part in the next survey.

References:

[1] “What Does COVID-19 Recovery Actually Look Like?” Patient-led Research for COVID-19. May 11, 2020.

[2] Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Ann Intern Med. 2020 Aug 18;173(4):262-267.

Links:

Coronavirus (COVID-19) (NIH)

Patient-led Research for COVID-19


More Genetic Clues to COVID-19 Susceptibility and Severity

Posted on by

DNA with coronavirus. A doctor tends to a woman patient in a hospital bed.

Many factors influence our risk of illness from SARS-CoV-2, the coronavirus responsible for COVID-19. That includes being careful to limit our possible exposures to the virus, as well as whether we have acquired immunity from a vaccine or an earlier infection. But once a person is infected, a host of other biological factors, including age and pre-existing medical conditions, will influence one’s risk of becoming severely ill.

While earlier studies have tied COVID-19 severity to genetic variations in a person’s antiviral defenses and blood type, we still have a lot to learn about how a person’s genetic makeup influences COVID-19 susceptibility and severity. So, I was pleased to see the recent findings of an impressive global effort to map the genetic underpinnings of SARS-CoV-2 infection and COVID-19 severity, which involved analyzing the genomes of many thousands of people with COVID-19 around the globe.

This comprehensive search led to the identification of 13 regions of the human genome that appear to play a role in COVID-19 infection or severity. Though more research is needed to sort out these leads, they represent potentially high-quality clues to the pathways that this virus uses to cause illness, and help to explain why some people are more likely to become infected with SARS-CoV-2 or to develop severe disease.

The international effort, known as The COVID-19 Host Genetics Initiative, is led by Andrea Ganna, Institute for Molecular Medicine Finland, Helsinki, and colleagues in the United States and around the world. Teasing out those important genetic influences is no easy task. It requires vast amounts of data, so Ganna reached out to the scientific community via Twitter to announce a new COVID-19 gene-hunting effort and ask for help. Thousands of researchers around the world answered his call. The new study, published in the journal Nature, includes data collected through the initiative as of January 2021, and represents nearly 50,000 COVID-19 patients and another 2 million uninfected controls [1].

In search of common gene variants that may influence who becomes infected with SARS-CoV-2 and how sick they will become, Ganna’s international team turned to genome-wide association studies (GWAS). As part of this, the team analyzed patient genome data for millions of so-called single-nucleotide polymorphisms, or SNPs. While these single “letter” nucleotide substitutions found all across the genome are generally of no health significance, they can point the way to the locations of gene variants that turn up more often in association with particular traits or conditions—in this case, COVID-19 susceptibility or severity. To find them, the researchers compared SNPs in people with COVID-19 to those in about 2 million healthy blood donors from the same population groups. They also looked for variants that turned up significantly more often in people who became severely ill.

Their analyses uncovered a number of gene variants associated with SARS-CoV-2 infection or severe COVID-19 in 13 regions of the human genome, six of which were new. Four of the 13 affect a person’s risk for becoming infected with SARS-CoV-2. The other nine influence a person’s risk for developing severe illness following the infection.

Interestingly, some of these gene variants already were known to have associations with other types of lung or autoimmune diseases. The new findings also help to confirm previous studies suggesting that the gene that determines a person’s blood type may influence a person’s susceptibility to SARS-CoV-2 infection, along with other genes that play a role in immunity. For example, the findings show overlap with variants within a gene called TYK2, which was earlier shown to protect against autoimmune-related diseases. Some of the variants also point to the need for further work to study previously unexplored biological processes that may play potentially important roles in COVID-19.

Two of the new variants associated with disease severity were discovered only by including individuals with East Asian ancestry, highlighting the value of diversity in such analyses to gain a more comprehensive understanding of the biology. One of these newfound variants is close to a gene known as FOXP4, which is especially intriguing because this gene is known to play a role in the airways of the lung.

The researchers continue to look for more underlying clues into the biology of COVID-19. In fact, their latest unpublished analysis has increased the number of COVID-19 patients from about 50,000 to 125,000, making it possible to add another 10 gene variants to the list.

Reference:

[1] Mapping the human genetic architecture of COVID-19. COVID-19 Host Genetics Initiative. Nature. 2021 Jul 8.

Links:

COVID-19 Research (NIH)

The COVID-19 Host Genetics Initiative


mRNA Vaccines May Pack More Persistent Punch Against COVID-19 Than Thought

Posted on by

Many people, including me, have experienced a sense of gratitude and relief after receiving the new COVID-19 mRNA vaccines. But all of us are also wondering how long the vaccines will remain protective against SARS-CoV-2, the coronavirus responsible for COVID-19.

Earlier this year, clinical trials of the Moderna and Pfizer-BioNTech vaccines indicated that both immunizations appeared to protect for at least six months. Now, a study in the journal Nature provides some hopeful news that these mRNA vaccines may be protective even longer [1].

In the new study, researchers monitored key immune cells in the lymph nodes of a group of people who received both doses of the Pfizer-BioNTech mRNA vaccine. The work consistently found hallmarks of a strong, persistent immune response against SARS-CoV-2 that could be protective for years to come.

Though more research is needed, the findings add evidence that people who received mRNA COVID-19 vaccines may not need an additional “booster” shot for quite some time, unless SARS-CoV-2 evolves into new forms, or variants, that can evade this vaccine-induced immunity. That’s why it remains so critical that more Americans get vaccinated not only to protect themselves and their loved ones, but to help stop the virus’s spread in their communities and thereby reduce its ability to mutate.

The new study was conducted by an NIH-supported research team led by Jackson Turner, Jane O’Halloran, Rachel Presti, and Ali Ellebedy at Washington University School of Medicine, St. Louis. That work builds upon the group’s previous findings that people who survived COVID-19 had immune cells residing in their bone marrow for at least eight months after the infection that could recognize SARS-CoV-2 [2]. The researchers wanted to see if similar, persistent immunity existed in people who hadn’t come down with COVID-19 but who were immunized with an mRNA vaccine.

To find out, Ellebedy and team recruited 14 healthy adults who were scheduled to receive both doses of the Pfizer-BioNTech vaccine. Three weeks after their first dose of vaccine, the volunteers underwent a lymph node biopsy, primarily from nodes in the armpit. Similar biopsies were repeated at four, five, seven, and 15 weeks after the first vaccine dose.

The lymph nodes are where the human immune system establishes so-called germinal centers, which function as “training camps” that teach immature immune cells to recognize new disease threats and attack them with acquired efficiency. In this case, the “threat” is the spike protein of SARS-COV-2 encoded by the vaccine.

By the 15-week mark, all of the participants sampled continued to have active germinal centers in their lymph nodes. These centers produced an army of cells trained to remember the spike protein, along with other types of cells, including antibody-producing plasmablasts, that were locked and loaded to neutralize this key protein. In fact, Ellebedy noted that even after the study ended at 15 weeks, he and his team continued to find no signs of germinal center activity slowing down in the lymph nodes of the vaccinated volunteers.

Ellebedy said the immune response observed in his team’s study appears so robust and persistent that he thinks that it could last for years. The researcher based his assessment on the fact that germinal center reactions that persist for several months or longer usually indicate an extremely vigorous immune response that culminates in the production of large numbers of long-lasting immune cells, called memory B cells. Some memory B cells can survive for years or even decades, which gives them the capacity to respond multiple times to the same infectious agent.

This study raises some really important issues for which we still don’t have complete answers: What is the most reliable correlate of immunity from COVID-19 vaccines? Are circulating spike protein antibodies (the easiest to measure) the best indicator? Do we need to know what’s happening in the lymph nodes? What about the T cells that are responsible for cell-mediated immunity?

If you follow the news, you may have seen a bit of a dust-up in the last week on this topic. Pfizer announced the need for a booster shot has become more apparent, based on serum antibodies. Meanwhile, the Food and Drug Administration and Centers for Disease Control and Prevention said such a conclusion would be premature, since vaccine protection looks really good right now, including for the delta variant that has all of us concerned.

We’ve still got a lot more to learn about the immunity generated by the mRNA vaccines. But this study—one of the first in humans to provide direct evidence of germinal center activity after mRNA vaccination—is a good place to continue the discussion.

References:

[1] SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Turner JS, O’Halloran JA, Kalaidina E, Kim W, Schmitz AJ, Zhou JQ, Lei T, Thapa M, Chen RE, Case JB, Amanat F, Rauseo AM, Haile A, Xie X, Klebert MK, Suessen T, Middleton WD, Shi PY, Krammer F, Teefey SA, Diamond MS, Presti RM, Ellebedy AH. Nature. 2021 Jun 28. [Online ahead of print]

[2] SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, Hansen L, Haile A, Klebert MK, Pusic I, O’Halloran JA, Presti RM, Ellebedy AH. Nature. 2021 May 24. [Online ahead of print]

Links:

COVID-19 Research (NIH)

Ellebedy Lab (Washington University, St. Louis)

NIH Support: National Institute of Allergy and Infectious Diseases; National Center for Advancing Translational Sciences


Next Page