Skip to main content

100 Search Results for "long covid"

Breakthrough Infections in Vaccinated People Less Likely to Cause ‘Long COVID’

Posted on by

Long Covid. Two syringes in an arrow pointed down. symptoms of long covid in the background

There’s no question that vaccines are making a tremendous difference in protecting individuals and whole communities against infection and severe illness from SARS-CoV-2, the coronavirus that causes COVID-19. And now, there’s yet another reason to get the vaccine: in the event of a breakthrough infection, people who are fully vaccinated also are substantially less likely to develop Long COVID Syndrome, which causes brain fog, muscle pain, fatigue, and a constellation of other debilitating symptoms that can last for months after recovery from an initial infection.

These important findings published in The Lancet Infectious Diseases are the latest from the COVID Symptom Study [1]. This study allows everyday citizens in the United Kingdom to download a smartphone app and self-report data on their infection, symptoms, and vaccination status over a long period of time.

Previously, the study found that 1 in 20 people in the U.K. who got COVID-19 battled Long COVID symptoms for eight weeks or more. But this work was done before vaccines were widely available. What about the risk among those who got COVID-19 for the first time as a breakthrough infection after receiving a double dose of any of the three COVID-19 vaccines (Pfizer, Moderna, AstraZeneca) authorized for use in the U.K.?

To answer that question, Claire Steves, King’s College, London, and colleagues looked to frequent users of the COVID Symptom Study app on their smartphones. In its new work, Steves’ team was interested in analyzing data submitted by folks who’d logged their symptoms, test results, and vaccination status between December 9, 2020, and July 4, 2021. The team found there were more than 1.2 million adults who’d received a first dose of vaccine and nearly 1 million who were fully vaccinated during this period.

The data show that only 0.2 percent of those who were fully vaccinated later tested positive for COVID-19. While accounting for differences in age, sex, and other risk factors, the researchers found that fully vaccinated individuals who developed breakthrough infections were about half (49 percent) as likely as unvaccinated people to report symptoms of Long COVID Syndrome lasting at least four weeks after infection.

The most common symptoms were similar in vaccinated and unvaccinated adults with COVID-19, and included loss of smell, cough, fever, headaches, and fatigue. However, all of these symptoms were milder and less frequently reported among the vaccinated as compared to the unvaccinated.

Vaccinated people who became infected were also more likely than the unvaccinated to be asymptomatic. And, if they did develop symptoms, they were half as likely to report multiple symptoms in the first week of illness. Another vaccination benefit was that people with a breakthrough infection were about a third as likely to report any severe symptoms. They also were more than 70 percent less likely to require hospitalization.

We still have a lot to learn about Long COVID, and, to get the answers, NIH has launched the RECOVER Initiative. The initiative will study tens of thousands of COVID-19 survivors to understand why many individuals don’t recover as quickly as expected, and what might be the cause, prevention, and treatment for Long COVID.

In the meantime, these latest findings offer the encouraging news that help is already here in the form of vaccines, which provide a very effective way to protect against COVID-19 and greatly reduce the odds of Long COVID if you do get sick. So, if you haven’t done so already, make a plan to protect your own health and help end this pandemic by getting yourself fully vaccinated. Vaccines are free and available near to you—just go to vaccines.gov or text your zip code to 438829.

Reference:

[1] Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. Antonelli M, Penfold RS, Merino J, Sudre CH, Molteni E, Berry S, Canas LS, Graham MS, Klaser K, Modat M, Murray B, Kerfoot E, Chen L, Deng J, Österdahl MF, Cheetham NJ, Drew DA, Nguyen LH, Pujol JC, Hu C, Selvachandran S, Polidori L, May A, Wolf J, Chan AT, Hammers A, Duncan EL, Spector TD, Ourselin S, Steves CJ. Lancet Infect Dis. 2021 Sep 1:S1473-3099(21)00460-6.

Links:

COVID-19 Research (NIH)

Claire Steves (King’s College London, United Kingdom)

COVID Symptom Study


Predicting ‘Long COVID Syndrome’ with Help of a Smartphone App

Posted on by

Zoe COVID Sympton Study Tracker app
Credit: Zoe Global

As devastating as this pandemic has been, it’s truly inspiring to see the many innovative ways in which researchers around the world have enlisted the help of everyday citizens to beat COVID-19. An intriguing example is the COVID Symptom Study’s smartphone-based app, which already has been downloaded millions of times, mostly in the United States and United Kingdom. Analyzing data from 2.6 million app users, researchers published a paper last summer showing that self-reported symptoms can help to predict infection with SARS-CoV-2, the coronavirus that causes COVID-19 [1].

New work from the COVID Symptom Study now takes advantage of the smartphone app to shed more light on Long COVID Syndrome [2], in which people experience a constellation of symptoms long past the time that they’ve recovered from the initial stages of COVID-19 illness. Such symptoms, which can include fatigue, shortness of breath, “brain fog,” sleep disorders, fevers, gastrointestinal symptoms, anxiety, and depression, can persist for months and can range from mild to incapacitating

This latest findings, published in the journal Nature Medicine, come from a team led by Claire Steves and Tim Spector, King’s College London, and their colleagues, and that includes NIH grantee Andrew Chan, Massachusetts General Hospital, Boston, and others supported by the Massachusetts Consortium on Pathogen Readiness. The team began by looking at data recorded between March 24-Sept. 2, 2020 from about 4.2 million app users with an average age of 45, about 90 percent of whom lived in the U.K., with smaller numbers from the U.S. and Sweden.

For this particular study, the researchers decided to focused on 4,182 app users, all with confirmed COVID-19, who had consistently logged in their symptoms. Because these individuals also started using the app when they still felt physically well, the researchers could assess their COVID-19-associated symptoms over the course of the illness.

While most people who developed COVID-19 were back to normal in less than two weeks, the data suggest that one in 20 people with COVID-19 are likely to suffer symptoms of Long COVID that persist for eight weeks or more. About one in 50 people continued to have symptoms for 12 weeks or more. That suggests Long COVID could potentially affect many hundreds of thousands of people in the U.K. alone and millions more worldwide.

The team found that the individuals most likely to develop Long COVID were older people, women, and especially those who experienced five or more symptoms. The nature and order of symptoms, which included fatigue, headache, shortness of breath, and loss of smell, didn’t matter. People with asthma also were more likely to develop long-lasting symptoms, although the study found no clear links to any other pre-existing health conditions.

Using this information, the researchers developed a model to predict which individuals were most likely to develop Long COVID. Remarkably, this simple algorithm—based on age, gender, and number of early symptoms–accurately predicted almost 70 percent of cases of Long COVID. It was also about 70 percent effective in avoiding false alarms.

The team also validated the algorithm’s predictive ability in data from an independent group of 2,472 people with confirmed COVID-19 and a range of symptoms. In this group, having more than five symptoms within the first week also proved to be the strongest predictor of Long COVID. And, again, the model worked quite well in identifying those most likely to develop Long COVID.

These findings come as yet another important reminder of the profound impact of the COVID-19 pandemic on public health. This includes not only people who are hospitalized with severe COVID-19 but, all too often, those who get through the initial period of infection relatively unscathed.

Recently, NIH announced a $1.15 billion investment to identify the causes of Long COVID, to develop ways of treating individuals who don’t fully recover, and, ultimately, to prevent the disorder. We’ve been working diligently in recent weeks to identify the most pressing questions and areas of greatest opportunity to address this growing public health threat. As a first step, NIH is funding an effort to track the recovery paths of at least 40,000 adults and children infected with SARS-CoV-2, to learn more about who develops long-term effects and who doesn’t. If you’d like to find a way to pitch in and help, getting involved in the COVID Symptom Study is as easy as downloading the app.

References:

[1] Real-time tracking of self-reported symptoms to predict potential COVID-19. Menni C, Valdes AM, Freidin MB, Sudre CH, Nguyen LH, Drew DA, Ganesh S, Varsavsky T, Cardoso MJ, El-Sayed Moustafa JS, Visconti A, Hysi P, Bowyer RCE, Mangino M, Falchi M, Wolf J, Ourselin S, Chan AT, Steves CJ, Spector TD. Nat Med. 2020 Jul;26(7):1037-1040. doi: 10.1038/s41591-020-0916-2. Epub 2020 May 11.

[2] Attributes and predictors of long COVID. Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, Pujol JC, Klaser K, Antonelli M, Canas LS, Molteni E, Modat M, Jorge Cardoso M, May A, Ganesh S, Davies R, Nguyen LH, Drew DA, Astley CM, Joshi AD, Merino J, Tsereteli N, Fall T, Gomez MF, Duncan EL, Menni C, Williams FMK, Franks PW, Chan AT, Wolf J, Ourselin S, Spector T, Steves CJ. Nat Med. 2021 Mar 10.

Links:

NIH launches new initiative to study to “Long COVID”. 2021 Feb 23. (NIH)

COVID-19 Research (NIH)

Massachusetts Consortium on Pathogen Readiness (Boston)

COVID Symptom Study

Claire Steves (King’s College London, United Kingdom)

Tim Spector (King’s College London)

Andrew Chan (Massachusetts General Hospital, Boston)

NIH Support: National Institute of Diabetes and Digestive and Kidney Diseases


Trying to Make Sense of Long COVID Syndrome

Posted on by

Credit: NIH

More than 400,000 Americans have now lost their lives to COVID-19. But thousands of others who’ve gotten sick and survived COVID-19 are finding that a full recovery can be surprisingly elusive. Weeks and months after seemingly recovering from even mild cases of COVID-19, many battle a wide range of health problems.

Indeed, new results from the largest global study of this emerging “Long COVID syndrome” highlight just how real and pressing this public health concern really is. The study, reported recently as a pre-print on medRxiv, is based on survey results from more than 3,700 self-described COVID “Long Haulers” in 56 countries [1]. They show nearly half couldn’t work full time six months after unexpectedly developing prolonged symptoms of COVID-19. A small percentage of respondents, thankfully, seemed to have bounced back from brief bouts of Long COVID, though time will tell whether they have fully recovered.

These findings are the second installment from the online Body Politic COVID-19 Support Group and its Patient-Led Research for COVID-19, which consists of citizen scientists with a wide range of expertise in the arts and sciences who are struggling with the prolonged effects of COVID-19 themselves. In an earlier survey, this group provided a first-draft description of Long COVID syndrome, based on the self-reported experiences of 640 respondents.

In the new survey-based study led by Athena Akrami, with Patient-Led Research for COVID-19 and University College London, England, the goal was to characterize the experiences of many more people with Long COVID syndrome. They now define the syndrome as a collection of symptoms lasting for more than 28 days.

This second survey emphasizes the course and severity of more than 200 symptoms over time, including those affecting the heart, lungs, gastrointestinal system, muscles, and joints. It took a particularly in-depth look at neurological and neuropsychiatric symptoms, along with the ability of COVID-19 survivors to return to work and participate in other aspects of everyday life.

The 3,762 individuals who responded to the survey were predominately white females, between the ages of 30 and 60, who lived in the United States. As in the previous survey, the study included adults with symptoms consistent with COVID-19, whether or not the infection had been confirmed by a viral or antibody test. That is a potential weakness of the study, as some of these individuals may have had some other inciting illness. But many of the study’s participants developed symptoms early on in the pandemic, when testing was much more limited than it is now.

More than half never sought hospital care. Only 8 percent said that they’d been admitted to the hospital for COVID-19. And yet, 2,464 respondents reported COVID-19 symptoms lasting six months or longer. Most of the remaining respondents also continued to have symptoms, although they had not yet reached the six-month mark.

Among the most common symptoms were fatigue, worsening of symptoms after physical or mental activity, shortness of breath, trouble sleeping, and “brain fog,” or difficulty thinking clearly. The majority—88 percent—said they coped with some form of cognitive dysfunction or memory loss that to varying degrees affected their everyday lives. That includes the ability to make decisions, have conversations, follow instructions, and drive.

Those who had prolonged symptoms of COVID-19 for more than six months reported contending with about 14 symptoms on average. Most also reported that they’d had a relapse of symptoms, seemingly triggered by exercise, mental activity, or just everyday stress. When surveyed, nearly half of respondents said they’d had to reduce their hours at work due to the severity of their symptoms. Another 22 percent weren’t working at all due to their Long COVID.

The findings show that—even in those people who don’t require hospitalization for severe COVID-19—the condition’s prolonged symptoms are having a major impact on lives and livelihoods, both here and around the world. While the number of people affected isn’t yet known, if even a small proportion of the vast numbers of people infected with COVID-19 develop Long COVID syndrome, it represents a significant public health concern.

Another recent study from China further documents the tendency of COVID-19-related symptoms to linger past the usual recovery time for a respiratory virus [2]. The study, published in Lancet, showed that six months after the onset of illness, more than 75 percent of people hospitalized with COVID-19 in Wuhan between January and May 2020 continued to report at least one symptom. Fatigue, muscle weakness, sleep difficulties, anxiety, and depression all were common. More than half of individuals also had significant persistent lung abnormalities, which were more common in those who’d been more severely ill.

It’s essential for us to learn all we can about how SARS-CoV-2, which is the coronavirus that causes COVID-19, leads to such widespread symptoms. It’s also essential that we develop ways to better treat or prevent these symptoms. The NIH held a workshop last month to summarize what is known and fill in key gaps in our knowledge about Long COVID syndrome, which is clinically known as post-acute sequelae of COVID-19 (PASC). In December, Congress authorized funding for continued research on PASC, including an appropriation of funds for NIH to support continued study of these prolonged health consequences.

As these efforts and others proceed in the coming months, the hope is that we’ll gain much more insight and get some answers soon. And, if you’ve had or are currently experiencing symptoms of COVID-19, there’s still time to share your data by participating in the Patient-Led Research for COVID-19’s second survey.

References:

[1] Characterizing Long COVID in an international cohort: 7 months of symptoms and their impact. David HE et al. Medrxiv. 27 December 27 2020.

[2] 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Huang C, Huang L, et al. Lancet. 2021 Jan 16;397(10270):220-232.

Links:

COVID-19 Research (NIH)

Akrami Lab (Sainsbury Wellcome Center, University College London, England)

Patient-led Research for COVID-19

Video: Workshop on Post-Acute Sequelae of COVID-19 (NIH)


Citizen Scientists Take on the Challenge of Long-Haul COVID-19

Posted on by

Woman frustrated while working
Credit: iStock/Poike

Coronaviruses are a frequent cause of the common cold. Most of us bounce back from colds without any lasting health effects. So, you might think that individuals who survive other infectious diseases caused by coronaviruses—including COVID-19—would also return to normal relatively quickly. While that can be the case for some people, others who’ve survived even relatively mild COVID-19 are experiencing health challenges that may last for weeks or even months. In fact, the situation is so common, that some of these folks have banded together and given their condition a name: the COVID “long-haulers.”

Among the many longer-term health problems that have been associated with COVID-19 are shortness of breath, fatigue, cognitive issues, erratic heartbeat, gastrointestinal issues, low-grade fever, intolerance to physical or mental activity, and muscle and joint pains. COVID-19 survivors report that these symptoms flair up unpredictably, often in different combinations, and can be debilitating for days and weeks at a time. Because COVID-19 is such a new disease, little is known about what causes the persistence of symptoms, what is impeding full recovery, or how to help the long-haulers.

More information is now emerging from the first detailed patient survey of post-COVID syndrome, also known as Long COVID [1]. What’s unique about the survey is that it has been issued by a group of individuals who are struggling with the syndrome themselves. These citizen scientists, who belong to the online Body Politic COVID-19 Support Group, decided to take matters into their own hands. They already had a pretty good grip on what sort of questions to ask, as well as online access to hundreds of long-haulers to whom they could pose the questions.

The citizen scientists’ group, known as the Patient-led Research for COVID-19, brought a lot of talent and creativity to the table. Members reside in the United States, Canada, and England, and none have ever met face to face. But, between their day jobs, managing time differences, and health challenges, each team member spends about 20 hours per week working on their patient-led research, and are now putting the final touches on a follow-up survey that will get underway in the next few weeks.

For their first survey, the group members faced the difficult decision of whom to contact. First, they needed to define long hauler. For that, they decided to target people whose symptoms persisted for more than 2 weeks after their initial recovery from COVID-19. The 640 individuals who responded to the survey were predominately white females between the ages of 30 to 49 who lived in the United States. The members said that the gender bias may stem from women being more likely to join support groups and complete surveys, though there may be a gender component to Long COVID as well. About 10 percent of respondents reported that they had ultimately recovered from this post-COVID syndrome.

Another important issue revolved around COVID-19 testing. Most long-haulers in the online group had gotten sick in March and April, but weren’t so sick that they needed to be hospitalized. Because COVID-19 testing during those months was often limited to people hospitalized with severe respiratory problems, many long-haulers with mild or moderate COVID-like symptoms weren’t tested. Others were tested relatively late in the course of their illness, which can increase the likelihood of false negatives.

The team opted to cast a wide investigative net, concluding that limiting its data to only people who tested positive for COVID-19 might lead to the loss of essential information on long-haulers. It turns out that half of the respondents hadn’t been tested for SARS-CoV-2, the virus that causes COVID-19. The other half was divided almost equally between those who tested positive and those who tested negative. Here are some highlights of the survey’s findings:

Top 10 Symptoms: Respondents were asked to rank their most common symptoms and their relative severity. From highest to lowest, they were: mild shortness of breath, mild tightness of chest, moderate fatigue, mild fatigue, chills or sweats, mild body aches, dry cough, elevated temperature (98.8-100), mild headache, and brain fog/concentration challenges. Highlighting the value of patient-led research, the team was able to assemble an initial list of 62 symptoms that long-haulers often discuss in support groups. The survey revealed common symptoms that have been greatly underreported in the media, such as neurological symptoms. These include brain fog, concentration challenges, and dizziness.

Making a Recovery: Of the 60 respondents who had recovered, the average time to recovery was 27 days. The respondents who had not recovered had managed their symptoms for 40 days on average, with most dealing with health problems for 5 to 7 weeks. The report shows that the chance of full recovery by day 50 is less than 20 percent.

Exercise Capacity: About 65 percent of respondents now consider themselves mostly sedentary. Most had been highly physically active before developing COVID-19. Many long-haulers expressed concern that overexertion causes relapses

Testing. Respondents who reported testing positive for SARS-CoV-2 were tested on average earlier in their illness (by day 10) than those who reported testing negative (by day 16). The team noted that their findings parallel those in a recent published scientific study, which found false-negative rates for current PCR-based assays rose as the time between SARS-CoV-2 infection and testing increased [2]. In that published study, by day 21, the false-negative rate reached 66 percent. Only two symptoms (loss of smell and loss of taste) occurred more frequently in respondents who tested positive; the other 60 symptoms were statistically the same between groups. The citizen scientists speculate that testing is not capturing a subset of COVID patients, and more investigation is required.

Since issuing their survey results on May 11, the team has met with staff from the Centers for Disease Control and Prevention and the World Health Organization. Their work also been mentioned in magazine articles and even cited in some papers published in scientific journals.

In their next survey, these citizen scientists hope to fill in gaps in their first report, including examining antibody testing results, neurological symptoms, and the role of mental health. To increase geographic and demographic diversity, they will also translate the survey into 10 languages. If you’re a COVID-19 long-hauler and would like to find out how to get involved, there’s still time to take part in the next survey.

References:

[1] “What Does COVID-19 Recovery Actually Look Like?” Patient-led Research for COVID-19. May 11, 2020.

[2] Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Ann Intern Med. 2020 Aug 18;173(4):262-267.

Links:

Coronavirus (COVID-19) (NIH)

Patient-led Research for COVID-19


RADx Initiative: Bioengineering for COVID-19 at Unprecedented Speed and Scale

Posted on by

Credit: Africa Studio/Shutterstock; Quidel Corporation, San Diego, CA

As COVID-19 rapidly expanded throughout the world in April 2020, many in the biomedical technology community voiced significant concerns about the lack of available diagnostic tests. At that time, testing for SARS-CoV-2, the coronavirus that causes COVID-19, was conducted exclusively in clinical laboratories by order of a health-care provider. “Over the counter” (OTC) tests did not exist, and low complexity point of care (POC) platforms were rare. Fewer than 8 million tests were performed in the U.S. that month, and it was clear that we needed a radical transformation to make tests faster and more accessible.

By February 2022, driven by the Omicron variant surge, U.S. capacity had increased to a new record of more than 1.2 billion tests in a single month. Remarkably, the overwhelming majority of these—more than 85 percent—were “rapid tests” conducted in home and POC settings.

The story behind this practice-changing, “test-at-home” transformation is deeply rooted in technologic and manufacturing innovation. The NIH’s National Institute of Biomedical Imaging and Bioengineering (NIBIB), working collaboratively with multiple partners across NIH, government, academia, and the private sector, has been privileged to play a leading role in this effort via the Rapid Acceleration of Diagnostics (RADx®) initiative. On this two-year anniversary of RADx, we take a brief look back at its formation, impact, and potential for future growth.

On April 24, 2020, Congress recognized that testing was an urgent national need and appropriated $1.5 billion to NIH via an emergency supplement [1]. The goal was to substantially increase the number, type, and availability of diagnostic tests in only five to six months. Since the “normal” commercialization cycle for this type of diagnostic technology is typically more than five years, we needed an entirely new approach . . . fast.

The RADx initiative was launched just five days after that challenging Congressional directive [2]. Four NIH RADx programs were eventually created to support technology development and delivery, with the goal of matching test performance with community needs [3].The first two programs, RADx Tech and RADx Advanced Technology Platforms (ATP), were developed by NIBIB and focused on innovation for rapidly creating, scaling up, and deploying new technologies.

RADx Tech is built around NIBIB’s Point of Care Technologies Research Network (POCTRN) and includes core activities for technology review, test validation, clinical studies, regulatory authorization, and test deployment. Overall, the RADx Tech network includes approximately 900 participants from government, academia, and the private sector with unique capabilities and resources designed to decrease inherent risk and guide technologies from design and development to fully disseminated commercial products.

At the core of RADx Tech operations is the “innovation funnel” rapid review process, popularized as a shark tank [4]. A total of 824 complete applications were submitted during two open calls in a four-month period, beginning April 2020 and during a one-month period in June 2021. Forty-seven projects received phase 1 funding to validate and lower the inherent risk of developing these technologies. Meanwhile, 50 companies received phase 2 contracts to support FDA authorization studies and manufacturing expansion [5]

Beyond test development, RADx Tech has evolved to become a key contributor to the U.S. COVID-19 response. The RADx Independent Test Assessment Program (ITAP) was launched in October 2021 to accelerate regulatory authorization of new tests as a joint effort with the Food and Drug Administration (FDA) [6]. The ITAP acquires analytical and clinical performance data and works closely with FDA and manufacturers to shave weeks to months off the time it normally takes to receive Emergency Use Authorization (EUA).

The RADx Tech program also created a Variant Task Force to monitor the performance of tests against each new coronavirus “variant of concern” that emerges. This helps to ensure that marketed tests continue to remain effective. Other innovative RADx Tech projects include Say Yes! Covid Test, the first online free OTC test distribution program, and Project Rosa, which conducts real-time variant tracking across the country [7].

RADx Tech, by any measure, has exceeded even the most-optimistic expectations. In two years, RADx Tech-supported companies have received 44 EUAs and added approximately 2 billion tests and test products to the U.S. capacity. These remarkable numbers have steadily increased from more than16 million tests in September 2020, just five months after the program was established [8].

RADx Tech has also made significant contributions to the distribution of 1 billion free OTC tests via the government site, COVID.gov/tests. It has also provided critical guidance on serial testing and variants that have improved test performance and changed regulatory practice [9,10]. In addition, the RADx Mobile Application Reporting System (RADx MARS) reduces barriers to test reporting and test-to-treat strategies’ The latter offers immediate treatment options via telehealth or a POC location whenever a positive test result is reported. Finally, the When to Test website provides critical guidance on when and how to test for individuals, groups, and communities.

As we look to the future, RADx Tech has enormous potential to impact the U.S. response to other pathogens, diseases, and future pandemics. Major challenges going forward include improving home tests to work as well as lab platforms and building digital health networks for capturing and reporting test results to public health officials [11].

A recent editorial published in the journal Nature Biotechnology noted, “RADx has spawned a phalanx of diagnostic products to market in just 12 months. Its long-term impact on point of care, at-home, and population testing may be even more profound [12].” We are now poised to advance a new wave of precision medicine that’s led by innovative diagnostic technologies. It represents a unique opportunity to emerge stronger from the pandemic and achieve long-term impact.

References:

[1] Public Law 116 -139—Paycheck Protection Program and Health Care Enhancement Act.

[2] NIH mobilizes national innovation initiative for COVID-19 diagnostics, NIH news release, April 29, 2020.

[3] Rapid scaling up of Covid-19 diagnostic testing in the United States—The NIH RADx Initiative. Tromberg BJ, Schwetz TA, Pérez-Stable EJ, Hodes RJ, Woychik RP, Bright RA, Fleurence RL, Collins FS. N Engl J Med. 2020 Sep 10;383(11):1071-1077.

[4] We need more covid-19 tests. We propose a ‘shark tank’ to get us there. Alexander L. and Blunt R., Washington Post, April 20, 2020.

[5] RADx® Tech/ATP dashboard, National Institute of Biomedical Imaging and Bioengineering, NIH.

[6] New HHS actions add to Biden Administration efforts to increase access to easy-to-use over-the-counter COVID-19 tests. U.S. Department of Health and Human Services Press Office, October 25, 2021.

[7] A method for variant agnostic detection of SARS-CoV-2, rapid monitoring of circulating variants, detection of mutations of biological significance, and early detection of emergent variants such as Omicron. Lai E, et al. medRxiV preprint, January 9, 2022.

[8] RADx® Tech/ATP dashboard.

[9] Longitudinal assessment of diagnostic test performance over the course of acute SARS-CoV-2 infection. Smith RL, et al. J Infect Dis. 2021 Sep 17;224(6):976-982.

[10] Comparison of rapid antigen tests’ performance between Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529; BA1) variants of SARS-CoV-2: Secondary analysis from a serial home self-testing study. Soni A, et al. MedRxiv preprint, March 2, 2022.

[11] Reporting COVID-19 self-test results: The next frontier. Health Affairs, Juluru K., et al. Health Affairs, February 11, 2022.

[12] Radical solutions. Nat Biotechnol. 2021 Apr;39(4):391.

Links:

Get Free At-Home COVID Tests (COVID.gov)

When to Test (Consortia for Improving Medicine with Innovation & Technology, Boston)

Say Yes! COVID Test

RADx Programs (NIH)

RADx® Tech and ATP Programs (National Institute of Biomedical Imaging and Biomedical Engineering/NIH)

Independent Test Assessment Program (NIBIB)

Mobile Application Reporting through Standards (NIBIB)

Point-of-Care Technologies Research Network (POCTRN) (NIBIB)

[Note: Acting NIH Director Lawrence Tabak has asked the heads of NIH’s Institutes and Centers (ICs) to contribute occasional guest posts to the blog to highlight some of the interesting science that they support and conduct. This is the eighth in the series of NIH IC guest posts that will run until a new permanent NIH director is in place.]


Next Page