Skip to main content

13 Search Results for "iPSC"

Finding the ‘Tipping Point’ to Permanent Kidney Damage

Posted on by

left: A ring of DAPI surrounds clusters of CDH1 and PODXL. right - a ring of DAPI surrounds a matrix of PDGFRβ
Caption: Kidney organoids. Left, markers of the kidney’s filtering units called nephrons (purple, light blue, green); right, markers of the kidney’s connective tissue, or stroma (red and yellow). Credit: Gupta N., Science Trans. Med (2022)

Healthy human kidneys filter more than 30 gallons of blood each day on average, efficiently removing extra fluid and harmful toxins from the body. If injured, the kidneys have a remarkable capacity for repair. And, yet, in more than one in seven U.S. adults, including disproportionately people with diabetes and hypertension, the daily wear and tear on these vital organs has passed a “tipping point” toward irreparable damage and the onset of chronic kidney disease (CKD) [1].

Defining this tipping point has been a major challenge for a variety of technical reasons. But in a study just published in the journal Science Translational Medicine, researchers have discovered a molecular switch involved in controlling the transition from normal tissue repair to incomplete, or permanent, damage [2]. The NIH-supported researchers also suggest a possible drug candidate to control this switch and slow the progression of CKD.

Also impressive is that the team broke through these longstanding technical problems without probing or testing a single person with CKD. They made their discovery using kidney organoids, or miniature human kidneys, that are grown in a lab dish and naturally model the repair process that takes place in our bodies.

The latest findings come from a team led by Ryuji Morizane, Massachusetts General Hospital and Harvard Medical School, Boston. The researchers recognized that earlier studies in animal models had identified processes involved in kidney injury and repair. But so far, there’s been limited success in translating those discoveries into clinical advances. That’s because many potential treatments that have appeared safe and effective in animal models have proven to be either damaging to the kidneys or ineffective when studied in humans.

To continue the search, the Morizane lab generated human kidney organoids from induced pluripotent stem cells (iPSCs) and other sources that include multiple essential renal tissue types. Using their tiny human kidneys, Morizane and colleagues, including first author Navin Gupta, sought the molecules responsible for the transition from complete to incomplete kidney repair.

The team repeatedly exposed kidney organoids to the cancer chemotherapy drug cisplatin, which can damage the kidneys as an unwanted side effect. Afterwards, examining single cells from the organoid, the researchers looked for underlying changes in gene activity associated with the transition from kidney repair to permanent kidney damage.

All told, their studies identified 159 genes in 29 different pathways that activate when kidneys fully repaired themselves. They found that many of those genes, including two called FANCD2 and RAD51, grew less active as kidney damage became irreversible. These genes encode proteins that are known to play a role in a process whereby cells repair broken strands of DNA.

Further study of stored biopsied kidney tissue from people with diabetic kidney disease, the most common cause of kidney failure, corroborated the organoid data tying a loss of FANCD2 activity to incomplete repair of kidney tissue. That’s encouraging because it suggests the new discoveries made in kidney organoids exposed to cisplatin may be relevant to people suffering from various forms of kidney injury.

One of the big advantages of organoid studies is the ability to rapidly screen for promising new drug candidates in the lab. And, indeed, the researchers found that a drug candidate called SCR7 helped to maintain FANCD2 and RAD51 activity in chemotherapy-injured organoids, preventing irreversible damage.

While much more study is needed, the findings suggest a potentially promising new way to prevent the kidneys from reaching their “tipping point” into permanent damage, CKD, and the risk for kidney failure. They also suggest that further studies in kidney organoids may lead to treatments targeting other kidney diseases.

These latest findings also highlight important progress in human tissue engineering, with implications for a wide range of conditions. In addition to making fundamental new biomedical discoveries as this new study has done, one of the great hopes of such efforts, including NIH’s National Center for Advancing Translational Sciences’ Tissue Chip for Drug Screening, is to improve predictions of whether new drug candidates will be safe or toxic in humans, speeding advances toward the most promising new therapies.

March happens to be National Kidney Month, and it’s especially important to raise awareness because 90 percent of people with CKD don’t even know they have it. So, if you or a loved one is at risk for CKD, be vigilant. Meanwhile, the work continues through studies like this one to find better leads to help control CKD.

References:

[1] Chronic kidney disease in the United States, 2021. Centers for Disease Control and Prevention.

[2] Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Gupta N, Matsumoto T, Hiratsuka K, Garcia Saiz E, Galichon P, Miyoshi T, Susa K, Tatsumoto N, Yamashita M, Morizane R. Sci Transl Med. 2022 Mar 2;14(634):eabj4772

Links:

Chronic Kidney Disease (National Institute of Diabetes and Digestive and Kidney Diseases/NIH)

National Kidney Month 2022 (NIDDK)

Morizane Lab (Harvard Medical School, Boston, MA)

Tissue Chip for Screening (National Center for Advancing Translational Sciences/NIH)

NIH Support: National Institute of Diabetes and Digestive and Kidney Diseases; National Institute of Biomedical Imaging and Bioengineering; National Center for Advancing Translational Sciences


Making Personalized Blood-Brain Barriers in a Dish

Posted on by

Credit: Vatine et al, Cell Stem Cell, 2019

The blood-brain barrier, or BBB, is a dense sheet of cells that surrounds most of the brain’s blood vessels. The BBB’s tiny gaps let vital small molecules, such as oxygen and water, diffuse from the bloodstream into the brain while helping to keep out larger, impermeable foreign substances that don’t belong there.

But in people with certain neurological disorders—such as amyotrophic lateral sclerosis (ALS) and Huntington’s disease—abnormalities in this barrier may block the entry of biomolecules essential to healthy brain activity. The BBB also makes it difficult for needed therapies to reach their target in the brain.

To help look for solutions to these and other problems, researchers can now grow human blood-brain barriers on a chip like the one pictured above. The high-magnification image reveals some of the BBB’s cellular parts. There are endothelial-like cells (magenta), which are similar to those that line the small vessels surrounding the brain. In close association are supportive brain cells known as astrocytes (green), which help to regulate blood flow.

While similar organ chips have been created before, what sets apart this new BBB chip is its use of induced pluripotent stem cell (iPSC) technology combined with advanced chip engineering. The iPSCs, derived in this case from blood samples, make it possible to produce a living model of anyone’s unique BBB on demand.

The researchers, led by Clive Svendsen, Cedars-Sinai, Los Angeles, first use a biochemical recipe to coax a person’s white blood cells to become iPSCs. At this point, the iPSCs are capable of producing any other cell type. But the Svendsen team follows two different recipes to direct those iPSCs to differentiate into endothelial and neural cells needed to model the BBB.

Also making this BBB platform unique is its use of a sophisticated microfluidic chip, produced by Boston-based Emulate, Inc. The chip mimics conditions inside the human body, allowing the blood-brain barrier to function much as it would in a person.

The channels enable researchers to flow cerebral spinal fluid (CSF) through one side and blood through the other to create the fully functional model tissue. The BBB chips also show electrical resistance and permeability just as would be expected in a person. The model BBBs are even able to block the entry of certain drugs!

As described in Cell Stem Cell, the researchers have already created BBB chips using iPSCs from a person with Huntington’s disease and another from an individual with a rare congenital disorder called Allan-Herndon-Dudley syndrome, an inherited disorder of brain development.

In the near term, his team has plans to model ALS and Parkinson’s disease on the BBB chips. Because these chips hold the promise of modeling the human BBB more precisely than animal models, they may accelerate studies of potentially promising new drugs. Svendsen suggests that individuals with neurological conditions might one day have their own BBB chips made on demand to help in selecting the best-available therapeutic options for them. Now that’s a future we’d all like to see.

Reference:

[1] Human iPSC-Derived Blood-Brain Barrier Chips Enable Disease Modeling and Personalized Medicine Applications. Vatine GD, Barrile R, Workman MJ, Sances S, Barriga BK, Rahnama M, Barthakur S, Kasendra M, Lucchesi C, Kerns J, Wen N, Spivia WR, Chen Z, Van Eyk J, Svendsen CN. Cell Stem Cell. 2019 Jun 6;24(6):995-1005.e6.

Links:

Tissue Chip for Drug Screening (National Center for Advancing Translational Sciences/NIH)

Stem Cell Information (NIH)

Svendsen Lab (Cedars-Sinai, Los Angeles)

NIH Support: National Institute of Neurological Disorders and Stroke; National Center for Advancing Translational Sciences


Can Organoids Yield Answers to Fatty Liver Disease?

Posted on by

Liver Organoid
Confocal microscope image shows liver organoid made from iPS cells derived from children with Wolman disease. The hepatocyte cells (red) accumulate fat (blue). Credit: Cincinnati Children’s Hospital Medical Center

With advances in induced pluripotent stem cell (iPSC) technology, it’s now possible to reprogram adult skin or blood cells to form miniature human organs in a lab dish. While these “organoids” closely mimic the structures of the liver and other vital organs, it’s been tough to get them to represent inflammation, fibrosis, fat accumulation, and many other complex features of disease.

Fatty liver diseases are an increasingly serious health problem. So, I’m pleased to report that, for the first time, researchers have found a reliable way to make organoids that display the hallmarks of those conditions. This “liver in a dish” model will enable the identification and preclinical testing of promising drug targets, helping to accelerate discovery and development of effective new treatments.

Previous methods working with stem cells have yielded liver organoids consisting primarily of epithelial cells, or hepatocytes, which comprise most of the organ. Missing were other key cell types involved in the inflammatory response to fatty liver diseases.

To create a better organoid, the team led by Takanori Takebe, Cincinnati Children’s Hospital Medical Center, focused its effort on patient-derived iPSCs. Takebe and his colleagues devised a special biochemical “recipe” that allowed them to grow liver organoids with sufficient cellular complexity.

As published in Cell Metabolism, the recipe involves a three-step process to coax human iPSCs into forming multi-cellular liver organoids in as little as three weeks. With careful analysis, including of RNA sequencing data, they confirmed that those organoids contained hepatocytes and other supportive cell types. The latter included Kupffer cells, which play a role in inflammation, and stellate cells, the major cell type involved in fibrosis. Fibrosis is the scarring of the liver in response to tissue damage.

Now with a way to make multi-cellular liver organoids, the researchers put them to the test. When exposed to free fatty acids, the organoids gradually accumulated fat in a dose-dependent manner and grew inflamed, which is similar to what happens to people with fatty liver diseases.

The organoids also showed telltale biochemical signatures of fibrosis. Using a sophisticated imaging method called atomic force microscopy (AFM), the researchers found as the fibrosis worsened, they could measure a corresponding increase in an organoid’s stiffness.

Next, as highlighted in the confocal microscope image above, Takebe’s team produced organoids from iPSCs derived from children with a deadly inherited form of fatty liver disease known as Wolman disease. Babies born with this condition lack an enzyme called lysosomal acid lipase (LAL) that breaks down fats, causing them to accumulate dangerously in the liver. Similarly, the miniature liver shown here is loaded with accumulated fat lipids (blue).

That brought researchers to the next big test. Previous studies had shown that LAL deficiency in kids with Wolman disease overactivates another signaling pathway, which could be suppressed by targeting a receptor known as FXR. So, in the new study, the team applied an FXR-targeted compound called FGF19, and it prevented fat accumulation in the liver organoids derived from people with Wolman disease. The organoids treated with FGF19 not only were protected from accumulating fat, but they also survived longer and had reduced stiffening, indicating a reduction in fibrosis.

These findings suggest that FGF19 or perhaps another compound that acts similarly might hold promise for infants with Wolman disease, who often die at a very early age. That’s encouraging news because the only treatment currently available is a costly enzyme replacement therapy. The findings also demonstrate a promising approach to accelerating the search for new treatments for a variety of liver diseases.

Takebe’s team is now investigating this approach for non-alcoholic steatohepatitis (NASH), a common cause of liver failure and the need for a liver transplant. The hope is that studies in organoids will lead to promising new treatments for this liver condition, which affects millions of people around the world.

Ultimately, Takebe suggests it might prove useful to grow liver organoids from individual patients with fatty liver diseases, in order to identify the underlying biological causes and test the response of those patient-specific organoids to available treatments. Such evidence could one day help doctors to select the best available treatment option for each individual patient, and bring greater precision to treating liver disease.

Reference:

[1] Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Ouchi R, Togo S, Kimura M, Shinozawa T, Koido M, Koike H, Thompson W, Karns RA, Mayhew CN, McGrath PS, McCauley HA, Zhang RR, Lewis K, Hakozaki S, Ferguson A, Saiki N, Yoneyama Y, Takeuchi I, Mabuchi Y, Akazawa C, Yoshikawa HY, Wells JM, Takebe T. Cell Metab. 2019 May 14. pii: S1550-4131(19)30247-5.

Links:

Wolman Disease (Genetic and Rare Diseases Information Center/NIH)

Nonalcoholic Fatty Liver Disease & NASH (National Institute of Diabetes and Digestive and Kidney Diseases/NIH)

Stem Cell Information (NIH)

Tissue Chip for Drug Screening (National Center for Advancing Translational Sciences/NIH)

Takebe Lab (Cincinnati Children’s Hospital Medical Center)

NIH Support: National Institute of Diabetes and Digestive and Kidney Diseases


Mood-Altering Messenger Goes Nuclear

Posted on by

Serotonin

Serotonin is best known for its role as a chemical messenger in the brain, helping to regulate mood, appetite, sleep, and many other functions. It exerts these influences by binding to its receptor on the surface of neural cells. But startling new work suggests the impact of serotonin does not end there: the molecule also can enter a cell’s nucleus and directly switch on genes.

While much more study is needed, this is a potentially groundbreaking discovery. Not only could it have implications for managing depression and other mood disorders, it may also open new avenues for treating substance abuse and neurodegenerative diseases.

To understand how serotonin contributes to switching genes on and off, a lesson on epigenetics is helpful. Keep in mind that the DNA instruction book of all cells is essentially the same, yet the chapters of the book are read in very different ways by cells in different parts of the body. Epigenetics refers to chemical marks on DNA itself or on the protein “spools” called histones that package DNA. These marks influence the activity of genes in a particular cell without changing the underlying DNA sequence, switching them on and off or acting as “volume knobs” to turn the activity of particular genes up or down.

The marks include various chemical groups—including acetyl, phosphate, or methyl—which are added at precise locations to those spool-like proteins called histones. The addition of such groups alters the accessibility of the DNA for copying into messenger RNA and producing needed proteins.

In the study reported in Nature, researchers led by Ian Maze and postdoctoral researcher Lorna Farrelly, Icahn School of Medicine at Mount Sinai, New York, followed a hunch that serotonin molecules might also get added to histones [1]. There had been hints that it might be possible. For instance, earlier evidence suggested that inside cells, serotonin could enter the nucleus. There also was evidence that serotonin could attach to proteins outside the nucleus in a process called serotonylation.

These data begged the question: Is serotonylation important in the brain and/or other living tissues that produce serotonin in vivo? After a lot of hard work, the answer now appears to be yes.

These NIH-supported researchers found that serotonylation does indeed occur in the cell nucleus. They also identified a particular enzyme that directly attaches serotonin molecules to histone proteins. With serotonin attached, DNA loosens on its spool, allowing for increased gene expression.

The team found that histone serotonylation takes place in serotonin-producing human neurons derived from induced pluripotent stem cells (iPSCs). They also observed this process occurring in the brains of developing mice.

In fact, the researchers found evidence of those serotonin marks in many parts of the body. They are especially prevalent in the brain and gut, where serotonin also is produced in significant amounts. Those marks consistently correlate with areas of active gene expression.

The serotonin mark often occurs on histones in combination with a second methyl mark. The researchers suggest that this double marking of histones might help to further reinforce an active state of gene expression.

This work demonstrates that serotonin can directly influence gene expression in a manner that’s wholly separate from its previously known role in transmitting chemical messages from one neuron to the next. And, there are likely other surprises in store.

The newly discovered role of serotonin in modifying gene expression may contribute significantly to our understanding of mood disorders and other psychiatric conditions with known links to serotonin signals, suggesting potentially new targets for therapeutic intervention. But for now, this fundamental discovery raises many more intriguing questions than it answers.

Science is full of surprises, and this paper is definitely one of them. Will this kind of histone marking occur with other chemical messengers, such as dopamine and acetylcholine? This unexpected discovery now allows us to track serotonin and perhaps some of the brain’s other chemical messengers to see what they might be doing in the cell nucleus and whether this information might one day help in treating the millions of Americans with mood and behavioral disorders.

Reference:

[1] Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Farrelly LA, Thompson RE, Zhao S, Lepack AE, Lyu Y, Bhanu NV, Zhang B, Loh YE, Ramakrishnan A, Vadodaria KC, Heard KJ, Erikson G, Nakadai T, Bastle RM, Lukasak BJ, Zebroski H 3rd, Alenina N, Bader M, Berton O, Roeder RG, Molina H, Gage FH, Shen L, Garcia BA, Li H, Muir TW, Maze I. Nature. 2019 Mar 13. [Epub ahead of print]

Links:

Any Mood Disorder (National Institute of Mental Health/NIH)

Drugs, Brains, and Behavior: The Science of Addiction (National Institute on Drug Abuse/NIH)

Epigenomics (National Human Genome Research Institute/NIH)

Maze Lab (Icahn School of Medicine at Mount Sinai, New York, NY)

NIH Support: National Institute on Drug Abuse; National Institute of Mental Health; National Institute of General Medical Sciences; National Cancer Institute


Moving Closer to a Stem Cell-Based Treatment for AMD

Posted on by

In recent years, researchers have figured out how to take a person’s skin or blood cells and turn them into induced pluripotent stem cells (iPSCs) that offer tremendous potential for regenerative medicine. Still, it’s been a challenge to devise safe and effective ways to move this discovery from the lab into the clinic. That’s why I’m pleased to highlight progress toward using iPSC technology to treat a major cause of vision loss: age-related macular degeneration (AMD).

In the new work, researchers from NIH’s National Eye Institute developed iPSCs from blood-forming stem cells isolated from blood donated by people with advanced AMD [1]. Next, these iPSCs were exposed to a variety of growth factors and placed on supportive scaffold that encouraged them to develop into healthy retinal pigment epithelium (RPE) tissue, which nurtures the light-sensing cells in the eye’s retina. The researchers went on to show that their lab-grown RPE patch could be transplanted safely into animal models of AMD, preventing blindness in the animals.

This preclinical work will now serve as the foundation for a safety trial of iPSC-derived RPE transplants in 12 human volunteers who have already suffered vision loss due to the more common “dry” form of AMD, for which there is currently no approved treatment. If all goes well, the NIH-led trial may begin enrolling patients as soon as this year.

Risk factors for AMD include a combination of genetic and environmental factors, including age and smoking. Currently, more than 2 million Americans have vision-threatening AMD, with millions more having early signs of the disease [2].

AMD involves progressive damage to the macula, an area of the retina about the size of a pinhead, made up of millions of light-sensing cells that generate our sharp, central vision. Though the exact causes of AMD are unknown, RPE cells early on become inflamed and lose their ability to clear away debris from the retina. This leads to more inflammation and progressive cell death.

As RPE cells are lost during the “dry” phase of the disease, light-sensing cells in the macula also start to die and reduce central vision. In some people, abnormal, leaky blood vessels will form near the macula, called “wet” AMD, spilling fluid and blood under the retina and causing significant vision loss. “Wet” AMD has approved treatments. “Dry” AMD does not.

But, advances in iPSC technology have brought hope that it might one day be possible to shore up degenerating RPE in those with dry AMD, halting the death of light-sensing cells and vision loss. In fact, preliminary studies conducted in Japan explored ways to deliver replacement RPE to the retina [3]. Though progress was made, those studies highlighted the need for more reliable ways to produce replacement RPE from a patient’s own cells. The Japanese program also raised concerns that iPSCs derived from people with AMD might be prone to cancer-causing genomic changes.

With these challenges in mind, the NEI team led by Kapil Bharti and Ruchi Sharma have designed a more robust process to produce RPE tissue suitable for testing in people. As described in Science Translational Medicine, they’ve come up with a three-step process.

Rather than using fibroblast cells from skin as others had done, Bharti and Sharma’s team started with blood-forming stem cells from three AMD patients. They reprogrammed those cells into “banks” of iPSCs containing multiple different clones, carefully screening them to ensure that they were free of potentially cancer-causing changes.

Next, those iPSCs were exposed to a special blend of growth factors to transform them into RPE tissue. That recipe has been pursued by other groups for a while, but needed to be particularly precise for this human application. In order for the tissue to function properly in the retina, the cells must assemble into a uniform sheet, just one-cell thick, and align facing in the same direction.

So, the researchers developed a specially designed scaffold made of biodegradable polymer nanofibers. That scaffold helps to ensure that the cells orient themselves correctly, while also lending strength for surgical transplantation. By spreading a single layer of iPSC-derived RPE progenitors onto their scaffolds and treating it with just the right growth factors, the researchers showed they could produce an RPE patch ready for the clinic in about 10 weeks.

To test the viability of the RPE patch, the researchers first transplanted a tiny version (containing about 2,500 RPE cells) into the eyes of a rat with a compromised immune system, which enables human cells to survive. By 10 weeks after surgery, the human replacement tissue had integrated into the animals’ retinas with no signs of toxicity.

Next, the researchers tested a larger RPE patch (containing 70,000 cells) in pigs with an AMD-like condition. This patch is the same size the researchers ultimately would expect to use in people. Ten weeks after surgery, the RPE patch had integrated into the animals’ eyes, where it protected the light-sensing cells that are so critical for vision, preventing blindness.

These results provide encouraging evidence that the iPSC approach to treating dry AMD should be both safe and effective. But only a well-designed human clinical trial, with all the appropriate prior oversights to be sure the benefits justify the risks, will prove whether or not this bold approach might be the solution to blindness faced by millions of people in the future.

As the U.S. population ages, the number of people with advanced AMD is expected to rise. With continued progress in treatment and prevention, including iPSC technology and many other promising approaches, the hope is that more people with AMD will retain healthy vision for a lifetime.

References:

[1] Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, Li Y, Stoddard J, Stankewicz C, Wan Q, Zhang C, Campos MM, Miyagishima KJ, McGaughey D, Villasmil R, Mattapallil M, Stanzel B, Qian H, Wong W, Chase L, Charles S, McGill T, Miller S, Maminishkis A, Amaral J, Bharti K. Sci Transl Med. 2019 Jan 16;11(475).

[2] Age-Related Macular Degeneration, National Eye Institute.

[3] Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Takasu N, Ogawa S, Yamanaka S, Takahashi M, et al. N Engl J Med. 2017 Mar 16;376(11):1038-1046.

Links:

Facts About Age-Related Macular Degeneration (National Eye Institute/NIH)

Stem Cell-Based Treatment Used to Prevent Blindness in Animal Models of Retinal Degeneration (National Eye Institute/NIH)

Kapil Bharti (NEI)

NIH Support: National Eye Institute; Common Fund


Next Page