Skip to main content

2020 September

In Praise of Harmony

Posted on by

On September 24, I was named the 2020 Templeton Prize laureate as part of a virtual ceremony held at the National Academy of Sciences, Washington, D.C. It was quite a humbling experience to appear on the stage to receive a prize awarded previously to legendary figures such as Mother Teresa, Archbishop Desmond Tutu, and the Dalai Lama. Here is my acceptance address titled, “In Praise of Harmony.” I share the address in the continued hope that we may all find greater harmony in life.


Study Finds People Have Short-Lived Immunity to Seasonal Coronaviruses

Posted on by

Microscopic view of Coronavirus
Caption: Artistic rendering of coronaviruses. Credit: iStock/Naeblys

A key metric in seeking to end the COVID-19 pandemic is the likely duration of acquired immunity, which is how long people infected with SARS-CoV-2, the novel coronavirus that causes COVID-19, are protected against reinfection. The hope is that acquired immunity from natural infection—or from vaccines—will be long-lasting, but data to confirm that’s indeed the case won’t be in for many months or years.

In the meantime, a useful place to look for clues is in long-term data on reinfections with other seasonal coronaviruses. Could the behavior of less life-threatening members of the coronavirus family give us some insight into what to expect from SARS-CoV-2?

A new study, published in the journal Nature Medicine, has taken exactly this approach. The researchers examined blood samples collected continuously from 10 healthy individuals since the 1980s for evidence of infections—and reinfections—with four common coronaviruses. Unfortunately, it’s not particularly encouraging news. The new data show that immunity to other coronaviruses tends to be short-lived, with reinfections happening quite often about 12 months later and, in some cases, even sooner.

Prior to the discovery of SARS-CoV-2, six coronaviruses were known to infect humans. Four are responsible for relatively benign respiratory illnesses that regularly circulate to cause the condition we recognize as the common cold. The other two are more dangerous and, fortunately, less common: SARS-CoV-1, the virus responsible for outbreaks of Severe Acute Respiratory Syndrome (SARS), which ended in 2004; and MERS-CoV, the virus that causes the now rare Middle East Respiratory Syndrome (MERS).

In the new study, a team led by Lia van der Hoek, University of Amsterdam, the Netherlands, set out to get a handle on reinfections with the four common coronaviruses: HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1. This task isn’t as straightforward as it might sound. That’s because, like SARS-CoV-2, infections with such viruses don’t always produce symptoms that are easily tracked. So, the researchers looked instead to blood samples from 10 healthy individuals enrolled for decades in the Amsterdam Cohort Studies on HIV-1 Infection and AIDS.

To detect coronavirus reinfections, they measured increases in antibodies to a particular portion of the nucleocapsid of each coronavirus. The nucleocapsid is a protein shell that encapsulates a coronavirus’ genetic material and serves as important targets for antibodies. An increase in antibodies targeting the nucleocapsid indicated that a person was fighting a new infection with one of the four coronaviruses.

All told, the researchers examined a total of 513 blood samples collected at regular intervals—every 3 to 6 months. In those samples, the team’s analyses uncovered 3 to 17 coronavirus infections per study participant over more than 35 years. Reinfections occurred every 6 to 105 months. But reinfections happened most frequently about a year after a previous infection.

Not surprisingly, they also found that blood samples collected in the Netherlands during the summer months—June, July, August, and September—had the lowest rate of infections for all four seasonal coronaviruses, indicating a higher frequency of infections in winter in temperate countries. While it remains to be seen, it’s possible that SARS-CoV-2 ultimately may share the same seasonal pattern after the pandemic.

These findings show that annual reinfections are a common occurrence for all other common coronaviruses. That’s consistent with evidence that antibodies against SARS-CoV-2 decrease within two months of infection [2]. It also suggests that similar patterns of reinfection may emerge for SARS-CoV-2 in the coming months and years.

At least three caveats ought to be kept in mind when interpreting these data. First, the researchers tracked antibody levels but didn’t have access to information about actual illness. It’s possible that a rise in antibodies to a particular coronavirus might have provided exactly the response needed to convert a significant respiratory illness to a mild case of the sniffles or no illness at all.

Second, sustained immunity to viruses will always be disrupted if the virus is undergoing mutational changes and presenting a new set of antigens to the host; the degree to which that might have contributed to reinfections is not known. And, third, the role of cell-based immunity in fighting off coronavirus infections is likely to be significant, but wasn’t studied in this retrospective analysis.

To prepare for COVID-19 this winter, it’s essential to understand how likely a person who has recovered from the illness will be re-infected and potentially spread the virus to other people. While much more study is needed, the evidence suggests it will be prudent to proceed carefully and with caution when it comes to long-term immunity, whether achieved through naturally acquired infections or vaccination.

While we await a COVID-19 vaccine, the best way to protect yourself, your family, and your community is to take simple steps all of us can do today: maintain social distancing, wear a mask, avoid crowded indoor gatherings, and wash your hands.

References:

[1] Seasonal coronavirus protective immunity is short-lasting. Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, Jebbink MF, Matser A, Kinsella CM, Rueda P, Ieven M, Goossens H, Prins M, Sastre P, Deijs M, van der Hoek L. Nat Med. 2020 Sep 14. doi: 10.1038/s41591-020-1083-1. [Published online ahead of print.]

[2] Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19. Ibarrondo FJ, Fulcher JA, Goodman-Meza D, Elliott J, Hofmann C, Hausner MA, Ferbas KG, Tobin NH, Aldrovandi GM, Yang OO. N Engl J Med. 2020 Sep 10;383(11):1085-1087.

Links:

Coronavirus (COVID-19) (NIH)

Lia van der hoek (University of Amsterdam, the Netherlands)


Honored to Receive Templeton Prize

Posted on by

<
Last May, it was such an honor to learn that I’d been selected the 2020 Templeton Prize Laureate. The virtual ceremony was held last night at the National Academy of Sciences. But back in August, folks with the Templeton Prize recorded this brief video in which they asked me to reflect on the pandemic and the quest to find a cure. I enjoyed seeing the video, and I hope you do, too. The Templeton Prize honors people whose career achievements advance Sir John Templeton’s philanthropic vision: applying the power of science to explore the deepest questions of the universe and humankind’s place and purpose within it. Sir Templeton was an investor and philanthropist who died in 2008.

Insulin-Producing Organoids Offer Hope for Treating Type 1 Diabetes

Posted on by

Insulin-producing organoid
Caption: Human islet-like organoids express insulin (green). Credit: Salk Institute

For the 1 to 3 million Americans with type 1 diabetes, the immune system destroys insulin-producing beta cells of the pancreas that control the amount of glucose in the bloodstream. As a result, these individuals must monitor their blood glucose often and take replacement doses of insulin to keep it under control. Such constant attention, combined with a strict diet to control sugar intake, is challenging—especially for children.

For some people with type 1 diabetes, there is another option. They can be treated—maybe even cured—with a pancreatic islet cell transplant from an organ donor. These transplanted islet cells, which harbor the needed beta cells, can increase insulin production. But there’s a big catch: there aren’t nearly enough organs to go around, and people who receive a transplant must take lifelong medications to keep their immune system from rejecting the donated organ.

Now, NIH-funded scientists, led by Ronald Evans of the Salk Institute, La Jolla, CA, have devised a possible workaround: human islet-like organoids (HILOs) [1]. These tiny replicas of pancreatic tissue are created in the laboratory, and you can see them above secreting insulin (green) in a lab dish. Remarkably, some of these HILOs have been outfitted with a Harry Potter-esque invisibility cloak to enable them to evade immune attack when transplanted into mice.

Over several years, Doug Melton’s lab at Harvard University, Cambridge, MA, has worked steadily to coax induced pluripotent stem (iPS) cells, which are made from adult skin or blood cells, to form miniature islet-like cells in a lab dish [2]. My own lab at NIH has also been seeing steady progress in this effort, working with collaborators at the New York Stem Cell Foundation.

Although several years ago researchers could get beta cells to make insulin, they wouldn’t secrete the hormone efficiently when transplanted into a living mouse. About four years ago, the Evans lab found a possible solution by uncovering a genetic switch called ERR-gamma that when flipped, powered up the engineered beta cells to respond continuously to glucose and release insulin [3].

In the latest study, Evans and his team developed a method to program HILOs in the lab to resemble actual islets. They did it by growing the insulin-producing cells alongside each other in a gelatinous, three-dimensional chamber. There, the cells combined to form organoid structures resembling the shape and contour of the islet cells seen in an actual 3D human pancreas. After they are switched on with a special recipe of growth factors and hormones, these activated HILOs secrete insulin when exposed to glucose. When transplanted into a living mouse, this process appears to operate just like human beta cells work inside a human pancreas.

Another major advance was the invisibility cloak. The Salk team borrowed the idea from cancer immunotherapy and a type of drug called a checkpoint inhibitor. These drugs harness the body’s own immune T cells to attack cancer. They start with the recognition that T cells display a protein on their surface called PD-1. When T cells interact with other cells in the body, PD-1 binds to a protein on the surface of those cells called PD-L1. This protein tells the T cells not to attack. Checkpoint inhibitors work by blocking the interaction of PD-1 and PD-L1, freeing up immune cells to fight cancer.

Reversing this logic for the pancreas, the Salk team engineered HILOs to express PD-L1 on their surface as a sign to the immune system not to attack. The researchers then transplanted these HILOs into diabetic mice that received no immunosuppressive drugs, as would normally be the case to prevent rejection of these human cells. Not only did the transplanted HILOs produce insulin in response to glucose spikes, they spurred no immune response.

So far, HILOs transplants have been used to treat diabetes for more than 50 days in diabetic mice. More research will be needed to see whether the organoids can function for even longer periods of time.

Still, this is exciting news, and provides an excellent example of how advances in one area of science can provide new possibilities for others. In this case, these insights provide fresh hope for a day when children and adults with type 1 diabetes can live long, healthy lives without the need for frequent insulin injections.

References:

[1] Immune-evasive human islet-like organoids ameliorate diabetes. [published online ahead of print, 2020 Aug 19]. Yoshihara E, O’Connor C, Gasser E, Wei Z, Oh TG, Tseng TW, Wang D, Cayabyab F, Dai Y, Yu RT, Liddle C, Atkins AR, Downes M, Evans RM. Nature. 2020 Aug 19. [Epub ahead of publication]

[2] Generation of Functional Human Pancreatic β Cells In Vitro. Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA. Cell. 2014 Oct 9;159(2):428-39.

[3] ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive β cells. Yoshihara E, Wei Z, Lin CS, Fang S, Ahmadian M, Kida Y, Tseng T, Dai Y, Yu RT, Liddle C, Atkins AR, Downes M, Evans RM. Cell Metab. 2016 Apr 12; 23(4):622-634.

Links:

Type 1 Diabetes (National Institute of Diabetes and Digestive and Kidney Diseases/NIH)

Pancreatic Islet Transplantation (National Institute of Diabetes and Digestive and Kidney Diseases)

The Nobel Prize in Physiology or Medicine 2012” for Induced Pluripotent Stem Cells, The Nobel Prize news release, October 8, 2012.

Evans Lab (Salk Institute, La Jolla, CA)

NIH Support: National Institute of Diabetes and Digestive and Kidney Diseases; National Cancer Institute


How COVID-19 Took Hold in North America and Europe

Posted on by

SARS-CoV-2 Tracking
Caption: SARS-CoV-2 introductions to U.S. and Europe. Credit: Modified from Worobey M, Science, 2020.

It was nearly 10 months ago on January 15 that a traveler returned home to the Seattle area after visiting family in Wuhan, China. A few days later, he started feeling poorly and became the first laboratory-confirmed case of coronavirus disease 2019 (COVID-19) in the United States. The rest is history.

However, new evidence published in the journal Science suggests that this first COVID-19 case on the West Coast didn’t snowball into the current epidemic. Instead, while public health officials in Washington state worked tirelessly and ultimately succeeded in containing its sustained transmission, the novel coronavirus slipped in via another individual about two weeks later, around the beginning of February.

COVID-19 is caused by the novel coronavirus SARS-CoV-2. Last winter, researchers sequenced the genetic material from the SARS-CoV-2 that was isolated from the returned Seattle traveler. While contact tracing didn’t identify any spread of this particular virus, dubbed WA1, questions arose when a genetically similar virus known as WA2 turned up in Washington state. Not long after, WA2-like viruses then appeared in California; British Columbia, Canada; and eventually 3,000 miles away in Connecticut. By mid-March, this WA2 cluster accounted for the vast majority—85 percent—of the cases in Washington state.

But was it possible that the WA2 cluster is a direct descendent of WA1? Did WA1 cause an unnoticed chain of transmission over several weeks, making the Seattle the epicenter of the outbreak in North America?

To answer those questions and others from around the globe, Michael Worobey, University of Arizona, Tucson, and his colleagues drew on multiple sources of information. These included data peretaining to viral genomes, airline passenger flow, and disease incidence in China’s Hubei Province and other places that likely would have influenced the probability that infected travelers were moving the virus around the globe. Based on all the evidence, the researchers simulated the outbreak more than 1,000 times on a computer over a two-month period, beginning on January 15 and assuming the epidemic started with WA1. And, not once did any of their simulated outbreaks match up to the actual genome data.

Those findings suggest to the researchers that the idea WA1 is responsible for all that came later is exceedingly unlikely. The evidence and simulations also appear to rule out the notion that the earliest cases in Washington state entered the United States by way of Canada. A deep dive into the data suggests a more likely scenario is that the outbreak was set off by one or more introductions of genetically similar viruses from China to the West Coast. Though we still don’t know exactly where, the Seattle area is the most likely site given the large number of WA2-like viruses sampled there.

Worobey’s team conducted a second analysis of the outbreak in Europe, and those simulations paint a similar picture to the one in the United States. The researchers conclude that the first known case of COVID-19 in Europe, arriving in Germany on January 20, led to a relatively small number of cases before being stamped out by aggressive testing and contact tracing efforts. That small, early outbreak probably didn’t spark the later one in Northern Italy, which eventually spread to the United States.

Their findings also show that the chain of transmission from China to Italy to New York City sparked outbreaks on the East Coast slightly later in February than those that spread from China directly to Washington state. It confirms that the Seattle outbreak was indeed the first, predating others on the East Coast and in California.

The findings in this report are yet another reminder of the value of integrating genome surveillance together with other sources of data when it comes to understanding, tracking, and containing the spread of COVID-19. They also show that swift and decisive public health measures to contain the virus worked when SARS-CoV-2 first entered the United States and Europe, and can now serve as models of containment.

Since the suffering and death from this pandemic continues in the United States, this historical reconstruction from early in 2020 is one more reminder that all of us have the opportunity and the responsibility to try to limit further spread. Wear your mask when you are outside the home; maintain physical distancing; wash your hands frequently; and don’t congregate indoors, where the risks are greatest. These lessons will enable us to better anticipate, prevent, and respond to additional outbreaks of COVID-19 or any other novel viruses that may arise in the future.

Reference:

[1] The emergence of SARS-CoV-2 in Europe and North America. Worobey M, Pekar J, Larsen BB, Nelson MI, Hill V, Joy JB, Rambaut A, Suchard MA, Wertheim JO, Lemey P. Science. 2020 Sep 10:eabc8169 [Epub ahead of print]

Links:

Coronavirus (COVID-19) (NIH)

Michael Worobey (University of Arizona, Tucson)

NIH Support: National Institute of Allergy and Infectious Diseases; Fogarty International Center; National Library of Medicine


Next Page