Skip to main content

Precision Medicine: Making Warfarin Safer

Posted on by Dr. Francis Collins

Blood sample for PT INR test, diagnosis for coagulation disease

Caption: Finding the right dose of the drug warfarin can be tricky, even with this standard test to measure how fast a person’s blood clots.
Credit: Thinkstock/jarun011

Every year, thousands of older Americans require emergency treatment to stop bleeding caused by taking warfarin, a frequently prescribed blood-thinning pill. My own mother received this drug in her later years, and her doctors encountered significant challenges getting the dose right. The problem is too much warfarin causes potentially serious bleeding, while too little leaves those who need the drug vulnerable to developing life-threatening clots in their legs or heart. The difference between too little and too much is distressingly small. But what if before writing a prescription, doctors could test for known genetic markers to help them gauge the amount of warfarin that a person should take?

Such tests have been available to doctors and patients for a few years, but they have not been widely used. The recent results of a national clinical trial offer some of the most convincing evidence that it’s time for that to change. In this study of 1,650 older adults undergoing elective hip or knee surgery, patients whose genetic makeup was used to help determine their dose of warfarin were less likely to suffer adverse events, including major bleeding. This trial marks an encouraging success story for the emerging field of pharmacogenomics, the study of how the variations in our genes affect our responses to medicines.

Most drugs are now prescribed in a “one-size-fits-all” fashion—as though they should work the same way in all people. But they don’t. Differences in our genes, sex, age, physiology, diet, and environment affect how our bodies respond to drugs.

That’s certainly the case with warfarin. With growing evidence that specific gene variations could affect benefits and risks, the Food and Drug Administration revised its product label in 2007 to encourage doctors to order pharmacogenomic tests when prescribing it. The suggestion, however, has gone largely unheeded. Prior studies hadn’t conclusively demonstrated that adjusting dosage on the basis of pharmacogenomic testing prevented adverse events among patients starting warfarin, and obtaining gene test results might take days or weeks—so doctors justifiably wondered whether this fine tuning of warfarin dosage was really necessary [1].

That’s what makes the results of the latest clinical trial, published recently in JAMA, so interesting [2]. They come from the NIH-supported Genetic InFormatics Trial (GIFT) of Warfarin Therapy to Prevent Deep Venous Thrombosis, led by Brian F. Gage at Washington University, St. Louis.

Unlike the previous clinical studies, GIFT enrolled more participants to detect possible differences. The trial also tested for variants in three genes instead of two, and used the genetic results to guide warfarin dosing for a longer period of 11 days. These gene variants include: CYP4F2, involved in the metabolism of vitamin K to help clot blood; CYP2C9 and its influence on warfarin metabolism in the liver; and VKORC1, involved in warfarin sensitivity.

In the study, Gage and colleagues enrolled healthy older adults (average age 72 and 64 percent women) planning to undergo elective hip or knee surgery. Participants were randomly assigned to one of two groups. Those in one group were dosed according to clinical factors, such as age, height, and weight. The other participants arrived at a dose based on those same clinical factors, plus testing of the gene variants.

Of the 789 patients prescribed warfarin based on clinical factors alone, 116 (14.7 percent) had at least one adverse event: major bleeding, a warfarin overdose, or a blood clot. But of the 808 patients who also received pharmacogenomic testing, only 87 (10.8 percent) had an adverse event. Indeed, pharmacogenomic dosing led to a reduction in the number of bleeding events, from 74 to 57. It nearly halved the number of symptomatic adverse events overall.

While the findings are encouraging, their immediate impact will depend, in part, on whether insurance companies decide to cover the cost of testing for these genes, which is nearly $200 today, but may decrease in the future. Meanwhile, efforts like the NIH All Of Us Research Program—which will soon enroll 1 million Americans to improve health and health care—offer the chance to further explore the use of pharmacogenomic testing and potentially to expand its use to many drugs.

As the evidence builds and genetic testing becomes less expensive, some may choose to undergo pharmacogenomic testing before they get sick or need surgery. Gage says he hopes to integrate genetic information into patients’ electronic medical records so that it’s available anytime a new drug is prescribed. The goal is fewer adverse reactions to medicines, for older Americans and younger ones, too.

References:

[1] Warfarin pharmacogenomics: current best evidence. Kimmel SE. J Thromb Haemost. 2015 Jun;13 Suppl 1:S266-71.

[2] Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: The GIFT Randomized Clinical Trial. Gage BF et al. JAMA. 2017;318(12):1115-1124.

Links:

Pharmacogenomics Fact Sheet (National Institute of General Medical Sciences/NIH)

Warfarin Dosing (Washington University, St. Louis)

Brian F. Gage (Washington University, St. Louis)

All of Us Research Program (NIH)

NIH Support: National Heart, Lung, and Blood Institute; National Center for Advancing Translational Sciences

7 Comments

  • Diva Diva says:

    I found this article quite interesting.Although I am not taking Warfarin, I have been using blood thinners for at least five years or more.

    I am now receiving treatment/screenings to discover why I am experiencing iron deficiency anemia.

  • D.C. says:

    All prescriptions should be safer or at least the risks should be quantified before people take the medicine.

  • lorrenainepeltier says:

    Blood thinners are medicines that prevent blood clots from forming. They also keep existing blood clots from getting larger. Clots in your arteries, veins, and heart can cause heart attacks, strokes, and blockages.

    There are two main types of blood thinners. Anticoagulants such as heparin or warfarin (also called Coumadin) slow down your body’s process of making clots. Antiplatelet drugs, such as aspirin, prevent blood cells called platelets from clumping together to form a clot…

  • L.P. says:

    When you take a blood thinner, follow directions carefully. Blood thinners may interact with certain foods, medicines, vitamins, and alcohol. Make sure that your healthcare provider knows all of the medicines and supplements you are using. You will probably need regular blood tests to check how well your blood is clotting. It is important to make sure that you’re taking enough medicine to prevent clots, but not so much that it causes bleeding…

  • lorrenainepeltier says:

    When you take a blood thinner, follow directions carefully. Blood thinners may interact with certain foods, medicines, vitamins, and alcohol. Make sure that your healthcare provider knows all of the medicines and supplements you are using. You will probably need regular blood tests to check how well your blood is clotting. It is important to make sure that you’re taking enough medicine to prevent clots, but not so much that it causes bleeding …

  • Spencer Ryce says:

    Blood thinners are often prescribed to reduce the risk of blood clots and stroke in people with atrial fibrillation (AFib) not caused by a heart valve problem, who are at high risk of blood clots. The name blood thinner can be misunderstood, as blood thinners don’t actually “thin” your blood. In fact, blood thinners work by lowering the chances of blood clots forming in your body…

  • ia says:

    Blood thinners are often prescribed to reduce the risk of blood clots and stroke in people with atrial fibrillation (AFib) not caused by a heart valve problem, who are at high risk of blood clots. The name blood thinner can be misunderstood, as blood thinners don’t actually “thin” your blood. In fact, blood thinners work by lowering the chances of blood clots forming in your body.

Leave a Comment

Discover more from NIH Director's Blog

Subscribe now to keep reading and get access to the full archive.

Continue reading