Skip to main content

2014 July

Snapshots of Life: Wild Outcome from Knocking Out Mobility Proteins

Posted on by

Spiky fibroblast cell

Credit: Praveen Suraneni and Rong Li, Stowers Institute for Medical Research

When biologists disabled proteins critical for cell movement, the result was dramatic. The membrane, normally a smooth surface enveloping the cell, erupted in spiky projections. This image, which is part of the Life: Magnified exhibit, resembles a supernova. Although it looks like it exploded, the cell pictured is still alive.

To create the image, Rong Li and Praveen Suraneni, NIH-funded cell biologists at the Stowers Institute for Medical Research in Kansas City, Missouri, disrupted two proteins essential to movement in fibroblasts—connective tissue cells that are also important for healing wounds. The first, called ARPC3, is a protein in the Arp2/3 complex. Without it, the cell moves more slowly and randomly [1]. Inhibiting the second protein gave this cell its spiky appearance. Called myosin IIA (green in the image), it’s like the cell’s muscle, and it’s critical for movement. The blue color is DNA; the red represents a protein called F-actin.


Autism Architecture: Unrolling the Genetic Blueprint

Posted on by

An array of childrenWe know that a combination of genetic and environmental factors influence a child’s risk of autism spectrum disorder (ASD), which is a diverse group of developmental brain conditions that disrupt language, communication, and social interaction. Still, there remain a great many unknowns, including the crucial issues of what proportion of ASD risk is due to genes and what sorts of genes are involved. Answering such questions may hold the key to expanding our understanding of the disorder—and thereby to devising better ways to help the millions of Americans whose lives are touched by ASD [1].

Last year, I shared how NIH-funded researchers had identified rare, spontaneous genetic mutations that appear to play a role in causing ASD. Now, there’s additional news to report. In the largest study of its kind to date, an international team supported by NIH recently discovered that common, inherited genetic variants, acting in tandem with each other or with rarer variants, can also set the stage for ASD—accounting for nearly half of the risk for what’s called “strictly defined autism,” the full-blown manifestation of the disorder. And, when the effects of both rare and common genetic variants are tallied up, we can now trace about 50 to 60 percent of the risk of strictly defined autism to genetic factors.


Snapshots of Life: Seeing, from Eye to Brain

Posted on by

Credit: Xueting Luo and Kevin Park, University of Miami

Fasten your seat belts! We’re going to fly through the brain of a mouse. Our tour guide is Kevin Park, an NIH-funded neuroscientist at the University of Miami, who has developed a unique method to visualize neurons in an intact brain. He’s going to give us a rare close-up of the retinal ganglion cells that carry information from the eye to the brain, where the light signals are decoded and translated.

To make this movie, Park has injected a fluorescent dye into the mouse eye; it is taken up by the retinal cells and traces out the nerve pathways from the optic nerve into the brain.


Cancer Cachexia: Might This Molecule Hold the Key?

Posted on by

PTHrP

Caption: Structure of parathyroid hormone-related protein (PTHrP), which has been implicated in cancer-related cachexia.
Source: The Protein Data Bank

No matter how much high-calorie food they eat or nutritionally fortified shakes they drink, many people with cancer just can’t seem to maintain their body weight. They lose muscle and fat, sometimes becoming so weak that they can’t tolerate further treatment. Called cachexia, this progressive wasting syndrome has long troubled patients and their families, as well as baffled scientists searching for ways to treat or perhaps even prevent it.

Some previous studies [1-3] have observed that humans and mice suffering from cachexia have “activated” brown fat. This type of fat, as I explained in a previous post, has the ability to convert its chemical energy into heat to keep the body warm. Intrigued by these hints, a team led by Bruce Spiegelman of the Dana-Farber Cancer Institute and Harvard Medical School in Boston recently decided to explore whether tumor cells might secrete molecules that spur similar brown fat-like activity, causing a gradual depletion of the body’s energy stores.


Formula for Innovation: People + Ideas + Time

Posted on by

Collage of scientists, clinical research, and science imagesIn these times of tight budgets and rapidly evolving science, we must consider new ways to invest biomedical research dollars to achieve maximum impact—to turn scientific discoveries into better health as swiftly as possible. We do this by thinking strategically about the areas of research that we support, as well as the process by which we fund that research.

Historically, most NIH-funded grants have been “project-based,” which means that their applications have clearly delineated aims for what will be accomplished during a defined project period. These research project grants typically last three to five years and vary in award amount. For example, the average annual direct cost of the R01 grant—the gold standard of NIH funding—was around $282,000 in FY 2013, with an average duration of about 4.3 years.


Next Page