Skip to main content

Exploiting Stem Cell Stickiness for Sorting

Posted on by

Photo of purple web-like objects adjacent to photo of a gloved hand holding a clear device with green lines, making it look like a circuit board.

Caption: Adult human fibroblast cells (left) are reprogramed into human induced pluripotent stem cells
(iPS cells). The iPS cells have a characteristic stickiness that lets them to adhere to sorting devices
(right) with different strengths than other cells.
Credit: Ankur Singh and Andres Garcia, Institute for Bioengineering & Bioscience, Georgia Tech

There is much excitement about the potential of stem cells for many applications, including regenerative medicine and treating human diseases. But growing pure cultures of stem cells by reprograming adult cells—like human fibroblasts—into a less differentiated cell type called a human induced Pluripotent Stem cell (iPS cell), is a tricky business. These stem cell cultures are often contaminated with other normal cells that do not have the same coveted therapeutic potential. Manually sorting these stem cells is time consuming and difficult; using chemical approaches can damage the DNA inside. Now, we have a better option: NIH funded researchers from the Georgia Institute of Technology in Atlanta have invented a cell-sorting device that exploits specific characteristics of iPS cells.

iPS cells have a characteristic ‘stickiness’ that allows them to adhere to surfaces inside the sorting chip with different strengths than other cells. This stickiness is due to a signature set of proteins on the surface of these stem cells. Normal cells are coated in other proteins that give their surfaces different adhesive properties.

The researchers say the method is gentle, efficient, rapid, and generates collections of stem cells that are 95–99% pure.

Reference:

Adhesion strength-based, label-free isolation of human pluripotent stem cells. Singh A, Suri S, Lee T, Chilton JM, Cooke MT, Chen W, Fu J, Stice SL, Lu H, McDevitt TC, García AJ. Nat Methods. 2013 May;10(5):438-44.

NIH support: National Institute of General Medical Sciences; National Institute of Neurological Disorders and Stroke; National Cancer Institute

3 Comments

Leave a Comment