Skip to main content

MAGEL2

Genome Sequencing: Exploring the Diagnostic Promise

Posted on by Dr. Francis Collins

Hanners Family

Caption: Whole genome sequencing revealed that sisters Addison and Trinity Hanners, ages 7 and 10, shown here with their mother Hanna, have a rare syndrome caused by a mutation in the MAGEL2 gene.
Credit: Courtesy of the Hanners family

At the time that we completed a draft of the 3 billion letters of the human genome about a decade ago, it would have cost about $100 million to sequence a second human genome. Today, thanks to advances in DNA sequencing technology, it will soon be possible to sequence your genome or mine for  $1,000 or less. All of this progress has made genome sequencing a far more realistic clinical option to consider for people, especially children, who suffer from baffling disorders that can’t be precisely diagnosed by other medical tests.

While researchers are still in the process of evaluating genome sequencing for routine clinical use, and data analysis continues to be a major challenge, one area of considerable promise centers on neurodevelopmental disorders. Such disorders—which affect about 3 percent of children—range from relatively common conditions like autism spectrum disorder to very rare conditions that impair the development of the brain or central nervous system. In the latest study, an NIH-funded research team reports that sequencing either a patient’s whole genome or whole exome (the 1.5 percent of the genome that encodes proteins) appears to be an effective—as well as a cost-effective—strategy for diagnosing neurodevelopmental disorders that have eluded diagnosis through standard means.