LabTV: Curious about the Aging Brain

Saul Villeda

This LabTV video takes us to the West Coast to meet Saul Villeda, a creative young researcher who’s exploring ways to reduce the effects of aging on the human brain. Thanks to a 2012 NIH Director’s Early Independence award, Villeda set up his own lab at the University of California, San Francisco to study how age-related immune changes may affect the ability of brain cells to regenerate. By figuring out exactly what’s going on, Villeda and his team hope to devise ways to counteract such changes, possibly preventing or even reversing the cognitive declines that all too often come with age.

Villeda is the first person in his family to become a scientist. His parents immigrated to the United States from Guatemala, settled into a working-class neighborhood in Pasadena, CA, and enrolled their kids in public schools. While he was growing up, Villeda says he’d never even heard of a Ph.D. and thought all doctors were M.D.’s who wore stethoscopes. But he did have a keen mind and a strong sense of curiosity—gifts that helped him become the valedictorian of his high school class and find his calling in science. Villeda went on to earn an undergraduate degree in physiological science from the University of California, Los Angeles and a Ph.D. in neurosciences from Stanford University Medical School, Palo Alto, CA, as well as to publish his research findings in several influential scientific journals.

Continue reading

Creative Minds: Michael Angelo’s Art

Multiplexed image of breast cancer cells

Caption: The location and abundance of six proteins—e-cadherin (green), vimentin (blue), actin (red), estrogen receptor, progesterone receptor, and Ki67—found in breast cancer cells are seen in this multiplexed ion beam image. Cells positive for estrogen receptor a, progesterone receptor, and Ki-67 appear yellow; cells expressing estrogen receptor a and the progesterone receptor appear aqua.
Credit: Michael Angelo

The artistic masterpiece above, reminiscent of a stained glass window, is the work of Michael Angelo—no, not the famous 16th Century Italian artist, but a 21st Century physician-scientist who’s out to develop a better way of looking at what’s going on inside solid tumors. Called multiplexed ion beam imaging (MIBI), Angelo’s experimental method may someday give clinicians the power to analyze up to 100 different proteins in a single tumor sample.

In this image, Angelo used MIBI to analyze a human breast tumor sample for nine proteins simultaneously—each protein stained with an antibody tagged with a metal reporter. Six of the nine proteins are illustrated here. The subpopulation of cells that are positive for three proteins often used to guide breast cancer treatment (estrogen receptor a, progesterone receptor, Ki-67) have yellow nuclei, while aqua marks the nuclei of another group of cells that’s positive for only two of the proteins (estrogen receptor a, progesterone receptor). In the membrane and cytoplasmic regions of the cell, red indicates actin, blue indicates vimentin, which is a protein associated with highly aggressive tumors, and the green is E-cadherin, which is expressed at lower levels in rapidly growing tumors than in less aggressive ones. Taken together, such “multi-dimensional” information on the types and amounts of proteins in a patient’s tumor sample may give oncologists a clearer idea of how quickly that tumor is growing and which types of treatments may work best for that particular patient.  It also shows dramatically how much heterogeneity is present in a group of breast cancer cells that would have appeared identical by less sophisticated methods.

Continue reading

Creative Minds: A Baby’s Eye View of Language Development

Click to start videoIf you are a fan of wildlife shows, you’ve probably seen those tiny video cameras rigged to animals in the wild that provide a sneak peek into their secret domains. But not all research cams are mounted on creatures with fur, feathers, or fins. One of NIH’s 2014 Early Independence Award winners has developed a baby-friendly, head-mounted camera system (shown above) that captures the world from an infant’s perspective and explores one of our most human, but still imperfectly understood, traits: language.

Elika Bergelson

Elika Bergelson
Credit: Zachary T. Kern

Elika Bergelson, a young researcher at the University of Rochester in New York, wants to know exactly how and when infants acquire the ability to understand spoken words. Using innovative camera gear and other investigative tools, she hopes to refine current thinking about the natural timeline for language acquisition. Bergelson also hopes her work will pay off in a firmer theoretical foundation to help clinicians assess children with poor verbal skills or with neurodevelopmental conditions that impair information processing, such as autism spectrum disorders.

Continue reading

Creative Minds: Tackling Chemotherapy Resistance

Aaron Meyer

Aaron Meyer

For many young scientists, nothing can equal the chance to have a lab of one’s own. Still, it often takes considerable time to get there. To help creative minds cut to the chase sooner, the NIH Director’s Early Independence Awards this year will enable 17 outstanding young researchers to skip post-doctoral training and begin running their own labs immediately.

Today, I’d like to tell you about one of these creative minds. His name is Aaron Meyer, a cell signaling expert at the Massachusetts Institute of Technology in Cambridge, and his research project will take aim at one the biggest challenges in cancer treatment: chemotherapy resistance.

Continue reading

Cool Videos: Myotonic Dystrophy

Myotonic Dystrophy Video screenshot

Today, I’d like to share a video that tells the inspirational story of two young Massachusetts Institute of Technology (MIT) researchers who are taking aim at a genetic disease that has touched both of their lives. Called myotonic dystrophy (DM), the disease is the most common form of muscular dystrophy in adults and causes a wide variety of health problems—including muscle wasting and weakness, irregular heartbeats, and profound fatigue.

If you’d like a few more details before or after watching these scientists’ video, here’s their description of their work:  “Eric Wang started his lab at MIT in 2013 through receiving an NIH Early Independence Award. Learn about the path that led him to study myotonic dystrophy, a disease that affects his family. Eric’s team of researchers includes Ona McConnell, an avid field hockey goalie who is affected by myotonic dystrophy herself. Determined to make a difference, Eric and Ona hope to inspire others in their efforts to better understand and treat this disease.”

Links: Continue reading