Taking a New Look at Artificial Sweeteners

Packets of artificial sweetenersDiet sodas and other treats sweetened with artificial sweeteners are often viewed as guilt-free pleasures. Because such foods are usually lower in calories than those containing natural sugars, many have considered them a good option for people who are trying to lose weight or keep their blood glucose levels in check. But some surprising new research suggests that artificial sweeteners might actually do the opposite, by changing the microbes living in our intestines [1].

To explore the impact of various kinds of sweeteners on the zillions of microbes living in the human intestine (referred to as the gut microbiome), an Israeli research team first turned to mice. One group of mice was given water that contained one of two natural sugars: glucose or sucrose; the other group received water that contained one of three artificial sweeteners: saccharin (the main ingredient in Sweet’N Low®), sucralose (Splenda®), or aspartame (Equal®, Nutrasweet®). Both groups ate a diet of normal mouse chow.

Continue reading

Snapshots of Life: Fat (Tissue) Is Beautiful

Fat cells in 3D

Caption: Fat cells (red) surrounded by blood vessels (green) that supply them with nutrients.
Credit: Daniela Malide, National Heart, Lung, and Blood Institute; NIH

With all of today’s sophisticated microscopes, you’d think it would be simple to take high-magnification photos of fat—but it’s not. Fat tissue often leaks slippery contents, namely lipids, when it’s thinly sliced for viewing under a microscope. And even when a sample is prepared without leakage, there’s another hurdle: the viscous droplets of lipid contained in the fat cells block light from passing through.

So, it’s good news that one of NIH’s intramural scientists here in Bethesda, MD, has come up with a way to produce high-resolution, 3-D images of fat cells like the one you see above. Not only are these images aesthetically appealing, but they’ll be valuable to efforts to expand our understanding of this essential and much-maligned tissue.

Continue reading

BRAIN: Launching America’s Next Moonshot

A stylized rocket headed toward a moon made of a human brain

Moonshot to the BRAIN

Some have called it America’s next moonshot. Indeed, like the historic effort that culminated with the first moon landing in 1969, the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is a bold, ambitious endeavor that will require the energy of thousands of our nation’s most creative minds working together over the long haul.

Our goal? To produce the first dynamic view of the human brain in action, revealing how its roughly 86 billion neurons and its trillions of connections interact in real time. This new view will revolutionize our understanding of how we think, feel, learn, remember, and move, transforming efforts to help the more than 1 billion people worldwide who suffer from autism, depression, schizophrenia, epilepsy, traumatic brain injury, Parkinson’s disease, Alzheimer’s disease, and other devastating brain disorders.

Continue reading

Cool Videos: Rapping for Research

CTSAs Video ScreenshotMany entries in the NIH Common Fund video competition highlight particular research projects. But in the original rap video that I’m featuring today, a group of New York researchers deliver a message about the central importance of collaboration for moving scientific breakthroughs from the bench to the bedside.

Or, as the researchers themselves put it, “This video describes, in rap, the Weill Cornell Clinical and Translational Science Center (CTSC), a partnership of world-class academic institutions and health centers in New York City. The CTSC supports the translation of basic science research into better patient care that will improve our nation’s health. It fosters high-risk/high-reward research, enabling the development of transformative tools and methodologies, and filling fundamental knowledge gaps. The CTSC seeks to change academic culture to foster collaboration and was made possible by a Clinical and Translational Science Award from the NIH Common Fund, administered by the National Center for Advancing Translational Sciences (NCATS).”

Links:

Weill Cornell Clinical and Translational Science Center

Clinical and Translational Science Awards (NCATS)

NIH Common Fund Video Competition

NIH support: Common Fund; National Center for Advancing Translational Sciences

Creative Minds: The Muscle-Brain Connection

Muscle activity and brain functionThere’s mounting evidence that exercise has a powerful effect on the human brain. For example, many studies have shown that physical activity appears to reduce the incidence of depression. Exercise can also delay or possibly even prevent Alzheimer’s disease, as well as easing symptoms in people who have these disorders [1, 2, 3, 4, 5]. But how, exactly, does getting our legs moving and our hearts pumping exert a positive influence on our brains?

Two scientists at Stanford University School of Medicine are out to get some answers to this important question. They have proposed that when we exercise, our muscles secrete a factor or combination of factors into the bloodstream, leading to structural and functional changes in the brain.

Continue reading