LabTV: Curious about the Aging Brain

Saul Villeda

This LabTV video takes us to the West Coast to meet Saul Villeda, a creative young researcher who’s exploring ways to reduce the effects of aging on the human brain. Thanks to a 2012 NIH Director’s Early Independence award, Villeda set up his own lab at the University of California, San Francisco to study how age-related immune changes may affect the ability of brain cells to regenerate. By figuring out exactly what’s going on, Villeda and his team hope to devise ways to counteract such changes, possibly preventing or even reversing the cognitive declines that all too often come with age.

Villeda is the first person in his family to become a scientist. His parents immigrated to the United States from Guatemala, settled into a working-class neighborhood in Pasadena, CA, and enrolled their kids in public schools. While he was growing up, Villeda says he’d never even heard of a Ph.D. and thought all doctors were M.D.’s who wore stethoscopes. But he did have a keen mind and a strong sense of curiosity—gifts that helped him become the valedictorian of his high school class and find his calling in science. Villeda went on to earn an undergraduate degree in physiological science from the University of California, Los Angeles and a Ph.D. in neurosciences from Stanford University Medical School, Palo Alto, CA, as well as to publish his research findings in several influential scientific journals.

Continue reading

LabTV: Young Scientist on a Mission to Cure Alzheimer’s Disease

Melissa Young LabTV

Time for another LabTV video! Today, I’d like you to meet Melissa Young, a third-year graduate student in the College of Pharmacy, University of Georgia, Athens. Young, who is doing research in the lab of James Franklin, says her scientific goal is to help build the scientific case that oxidative stress plays a key role in Alzheimer’s disease.

Young also has a personal reason for wanting to her research to succeed. From her experiences with a beloved grandmother and aunt, she has seen first-hand the heartbreaking effects of Alzheimer’s disease and other forms of dementia on both patients and their loved ones. Currently, there is no cure for Alzheimer’s disease and no treatments to halt or reverse its progression. That’s one of the reasons why Young has chosen to go into an area of science focused on translating basic discoveries into new therapeutics.

Continue reading

LabTV: Young Scientist Curious About How Cancer Cells Thrive

Craig RamirezThis week’s featured LabTV video takes us to New York City to see what’s going on in the world of Craig Ramirez, a young scientist who’s trying to find ways “to starve cancer cells.” Building on an interest in science that stretches back to first grade, this New Jersey native is busy working towards a Ph.D. in the lab of Dafna Bar-Sagi, an NIH-supported researcher at the NYU Langone Medical Center. (Oddly enough, Dr. Bar-Sagi and I actually collaborated more than 20 years ago when we were both junior professors on a project studying the genetic disease neurofibromatosis.)

Ramirez’s goal is to develop targeted approaches to disrupt the metabolism of cancer cells in ways that shrink or eliminate a patient’s tumor, while leaving healthy cells unharmed. He’s tackling this challenge by designing and conducting experiments on human cancer cell lines. But Ramirez isn’t working on this all alone. If he runs into an obstacle or needs to bounce an idea off someone, he just turns to his mentor or other colleagues in the friendly, fast-paced New York lab. By the way, it’s only natural that Ramirez would appreciate the value of strong teamwork—he was the starting shortstop on his high school baseball team!

Continue reading

LabTV: Young Scientist Curious About The Immune System

video of Heardley Moses Murdock
Welcome to LabTV! If you haven’t already, take a look at this video. I hope you will enjoy meeting the first young scientist featured in this brand new series that I’ve chosen to highlight on my blog. The inspiration for LabTV comes from Jay Walker, who is the founder of PriceLine, and curator and chairman of TEDMED, an annual conference focused on new ideas in health and medicine.

A few years ago, Walker noticed that there were many talented young people across America who are interested in science, but are uncertain about what a career in biomedical research is like. His solution was to create an online video community where anyone interested in going into research could learn from the experiences of scientists who, not so long ago, walked in their shoes. As you will see from spending a few moments in the lab with Heardley Moses Murdock, whose research involves a rare immune disorder called DOCK 8 deficiency, these video profiles put a human face on science and show its everyday stories.

Continue reading

Cool Videos: Patching and Sealing the Cell Membrane

Cell Repair Video

Bill Bement describes himself as a guy who “passionately, obsessively, and almost feverishly” loves to study cells. His excitement comes through in our final installment of the American Society for Cell Biology’s Celldance 2014. Bement, an NIH grantee at the University of Wisconsin, Madison, shares his scanning confocal microscope with us for this fascinating glimpse into the rapid response of cells to repair holes, tears, and other structural damage in their protective outer membranes.

For most people, this damage response runs on biochemical autopilot, sealing any membrane break within seconds to keep the cell viable and healthy. But some people inherit gene mutations that make sealing and patching difficult, particularly in cells that operate under repetitive mechanical stress. For example, some forms of muscular dystrophy stem specifically from an inherited inability to repair breaks in the cell membrane of skeletal muscle cells. In one type of disease that affects both skeletal and cardiac muscle, a gene mutation alters the shape of a protein called dysferlin, which normally binds annexin proteins that, as noted in the video, play a vital role in patching holes. In the presence of a glitch in dysferlin, the rapid chain of biochemical events needed to enable such repair breaks down.

There’s still an enormous amount to learn about cell membrane repair, so it will be interesting to see what Bement’s microscope and camera will show us next.

Links:

Bement Lab, University of Wisconsin-Madison

Celldance 2014, American Society for Cell Biology

NIH Support: National Institute of General Medical Sciences