Cool Videos: HIV in Action

HIV Video

There aren’t too many molecular biologists who have spent a 3-month stint in Hollywood. But Janet Iwasa is not your average molecular biologist. After earning her PhD in 2006, she took a break from the lab to take a crash course in animation techniques at the Gnomon School of Visual Effects.

While her classmates produced lots of cool footage worthy of the silver screen, Iwasa wanted to learn how to depict in colorful 3D action, some of the complex molecular processes that are so difficult to convey using static 2D illustration. Among her creations is this 2-minute, rough-draft animation showing how the human immunodeficiency virus (HIV) recognizes and infects a type of immune cell known as a T cell.

Continue reading

Creative Minds: A Baby’s Eye View of Language Development

Click to start videoIf you are a fan of wildlife shows, you’ve probably seen those tiny video cameras rigged to animals in the wild that provide a sneak peek into their secret domains. But not all research cams are mounted on creatures with fur, feathers, or fins. One of NIH’s 2014 Early Independence Award winners has developed a baby-friendly, head-mounted camera system (shown above) that captures the world from an infant’s perspective and explores one of our most human, but still imperfectly understood, traits: language.

Elika Bergelson

Elika Bergelson
Credit: Zachary T. Kern

Elika Bergelson, a young researcher at the University of Rochester in New York, wants to know exactly how and when infants acquire the ability to understand spoken words. Using innovative camera gear and other investigative tools, she hopes to refine current thinking about the natural timeline for language acquisition. Bergelson also hopes her work will pay off in a firmer theoretical foundation to help clinicians assess children with poor verbal skills or with neurodevelopmental conditions that impair information processing, such as autism spectrum disorders.

Continue reading

Cool Videos: Rapping for Research

CTSAs Video ScreenshotMany entries in the NIH Common Fund video competition highlight particular research projects. But in the original rap video that I’m featuring today, a group of New York researchers deliver a message about the central importance of collaboration for moving scientific breakthroughs from the bench to the bedside.

Or, as the researchers themselves put it, “This video describes, in rap, the Weill Cornell Clinical and Translational Science Center (CTSC), a partnership of world-class academic institutions and health centers in New York City. The CTSC supports the translation of basic science research into better patient care that will improve our nation’s health. It fosters high-risk/high-reward research, enabling the development of transformative tools and methodologies, and filling fundamental knowledge gaps. The CTSC seeks to change academic culture to foster collaboration and was made possible by a Clinical and Translational Science Award from the NIH Common Fund, administered by the National Center for Advancing Translational Sciences (NCATS).”

Links:

Weill Cornell Clinical and Translational Science Center

Clinical and Translational Science Awards (NCATS)

NIH Common Fund Video Competition

NIH support: Common Fund; National Center for Advancing Translational Sciences

Snapshots of Life: Behold the Beauty of the Eye

Colorized cross section of a mouse eye

Credit: Bryan William Jones and Robert E. Marc, University of Utah

The eye is a complex marvel of nature. In fact, there are some 70 to 80 kinds of cells in the mammalian retina. This image beautifully illuminates the eye’s complexity, on a cellular level—showing how these cells are arranged and wired together to facilitate sight.

“Reading” the image from left to right, we first find the muscle cells, in peach, that move the eye in its socket. The green layer, next, is the sclera—the white part of the eye. The spongy-looking layers that follow provide blood to the retina. The thin layer of yellow is the retinal pigment epithelium. The photoreceptors, in shades of pink, detect photons and transmit the information to the next layer down: the bipolar and horizontal cells (purple). From the bipolar cells, information flows to the amacrine and ganglion cells (blue, green, and turquoise) and then out of the retina via the optic nerve (the white plume that seems to billow out across the upper-right side of the eye), which transmits data to the brain for processing.

Continue reading

Cool Videos: Heart Attack

Blood Clots Video screenshot

Up next in our scientific film fest is an original music video, straight from the Big Apple. Created by researchers at The Rockefeller University, this song-and-dance routine provides an entertaining—and informative—look at how blood clots form, their role in causing heart attacks, and what approaches are being tried to break up these clots.

Before (or after!) you hit “play,” it might help to take a few moments to review the scientists’ description of their efforts: the key to saving the lives of heart attack victims lies in the molecules that control how blood vessels become clogged. This molecular biomedicine music video explains how ischemic injury can be prevented shortly after heart attack symptoms begin: clot blocking. The science is the collaborative work of Dr. Barry Coller of Rockefeller, Dr. Craig Thomas and his colleagues at the National Center for Advancing Translational Sciences (NCATS), and Dr. Marta Filizola and her Mount Sinai colleagues.

Links:

Laboratory of Blood and Vascular Biology, The Rockefeller University

Filizola Laboratory, Icahn School of Medicine at Mount Sinai

Center for Clinical and Translational Science, The Rockefeller University

Clinical and Translational Science Awards (NCATS/NIH)

NIH Common Fund Video Competition

NIH support: Common Fund; National Center for Advancing Translational Sciences