LabTV: Curious About Improving American Indian Health

Deana Around HimNovember is National American Indian and Alaska Native Heritage Month, and so I can’t think of a better time to introduce you to Deana Around Him, a social and behavioral health researcher active in efforts to improve the health of infants and children in native communities. Deana is a member of the Cherokee Nation of Oklahoma, where she grew up with her mother and sisters after losing her father to a car accident when she was only 3 years old.

Deana’s father was a pharmacist, and, as a child, Deana thought that she would follow in his footsteps. But after participating in the National Youth Leadership Forum for Medicine one summer in high school, she set her sights instead on a career in medicine and made her way to Brown University, Providence, RI. Attending an Ivy League school was something she “never in her wildest dreams imagined” as a kid.

Continue reading

LabTV: Curious about Pancreatic Cancer

Lindsey Briton

Growing up in Blacksburg, VA, Lindsey Brinton was constantly asking her parents how everything worked. She took this expansive natural curiosity with her to the University of Virginia, where she earned undergraduate degrees in French literature and biomedical engineering. Now a Ph.D. candidate at UVA in the lab of Kimberly Kelly—and the subject of our latest LabTV video—Brinton is posing interesting questions about pancreatic cancer.

Pancreatic cancer is one of the most difficult cancers to treat, in part, because it often spreads early and is diagnosed too late. Brinton’s research is focused on the cells that surround the tumor, the so-called stroma, and on the risk of metastasis. She wonders whether these cells display unique targets on their surface that, once discovered, can be exploited to kill the tumor cells. It’s certainly challenging research. Failures far outnumber successes. But as Brinton points out, endurance, perseverance, and keeping your eye on the big picture can lead to success.

Continue reading

LabTV: Curious About Sleep Disorders

Ketema Paul
Ketema Paul remembers being wowed at an early age by his cousin’s chemistry set and always feeling drawn to science. This interest followed him to Howard University, Washington, D.C., where he earned an undergraduate degree in biology, and on to Georgia State University, Atlanta for his Ph.D. Now, an associate professor at Atlanta’s Morehouse School of Medicine and the subject of our latest LabTV video, Paul runs his own neuroscience lab studying sleep disorders, which affect at least 60 million Americans as chronic or occasional problems and account for an estimated $16 billion in medical costs each year [1].

Paul’s path to the research bench is an interesting one. The product of a tough neighborhood in Washington, D. C., Paul lost a lot of friends to violence and faced many uncertainties. After college, he moved to Atlanta to try his hand at being a music producer and eventually took a side gig as a disc jockey for the campus radio station at Georgia State. Then one day after his radio show, Paul wandered over to have a look inside a nearby neuroscience lab just for kicks and opened the door on a discussion that would change his life.

Continue reading

Cool Videos: Pushing the Limits of Live-Cell Microscopy


If you’re not watching recent work in biology, you might have thought that light microscopy hit its limits years ago.  After all, it’s been around a long time. But to the contrary, microscopic imaging technology just keeps getting better and better. Here you can look with unprecedented clarity at just one of the many dynamic processes going on within a living cell. Specifically, this video shows actin fibers (orange-red), which are key components of the cell’s cytoskeleton, slowly pulling clathrin-coated pits (green), which are basket-like structures containing molecular cargo, away from the cell’s external membrane and deeper within the cell.

This remarkable live-action view was produced using one of two new forms of extended-resolution, structured illumination microscopy (SIM). SIM is faster than other forms of super-resolution fluorescence microscopy. It’s also less damaging to cells, making it the go-to method for live-cell imaging. The downside has been SIM’s limited resolution—just twice that of conventional light microscopes. However, Nobel Prize-winner Eric Betzig and postdoc Dong Li of Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, along with colleagues including Jordan Beach and John Hammer at NIH’s National Heart, Lung, and Blood Institute, recently came up with two different solutions to enhance SIM’s spatial resolution.

Continue reading

Climate and Viral Illness: El Niño Event Linked to Dengue Epidemics

Dengue Incidence Score Video
Caption: Incidence of dengue fever across Southeast Asia, 1993-2010. Note increasing incidence (red) starting about June 1997, which corresponds to a period of higher temperatures driven by a strong El Niño. At the end of the El Niño event, in January 1999, dengue incidence is much lower (green). Credit: Wilbert Van Panhuis, University of Pittsburgh

Just as the severity of the winter flu fluctuates from year to year in the United States, dengue fever can rage through tropical and subtropical regions of the world during their annual rainy seasons, causing potentially life-threatening high fever, severe joint pain, and bleeding. Other years—for still unknown reasons—dengue fizzles out. While many nations monitor the incidence of dengue within their borders, their data aren’t always combined to track outbreaks across wider regions over longer times.

Now, NIH-funded researchers and colleagues, reporting in Proceedings of the National Academy of Sciences [1], have linked an intense dengue epidemic that struck eight Southeast Asian countries starting in mid-1997 to high temperatures driven by the strongest El Niño event in recent times. El Niño is a complex, irregularly occurring series of climate changes in the Pacific Ocean with a global impact on weather patterns. This new insight into climatic factors associated with dengue transmission could enable better prevention measures, which may soon be needed because climatologists are predicting another strong El Niño event next year due to unusually high ocean temperatures in the equatorial Pacific. Continue reading