Cool Videos: Better Computation, Better Hope for Movement Disorders

Video for OpenSimAvatar. Pick your Sim. The entertainment world has done an amazing job developing software that generates animated characters with strikingly realistic movement. But scientists have taken this one step further to create models that can help kids with cerebral palsy walk better, delay the onset of osteoarthritis, and even answer a question in the minds of children of all ages: How exactly did T. rex run?

That’s what the researchers behind this video—an entrant in the NIH Common Fund’s recent video competition—have done. They’ve developed OpenSim: a free software tool that combines state-of-the-art musculoskeletal modeling and dynamic computer simulations to produce highly accurate representations of the underlying biomechanics of motion. OpenSim was designed at the NIH-supported center for physics-based Simulation of Biological Structures (Simbios) at Stanford University, Palo Alto, CA. And now, researchers around the world are using OpenSim to find more effective interventions for a variety of movement disorders.

Links:

NIH Common Fund Video Competition

OpenSim (Stanford University, Palo Alto, CA)

NIH Support: Common Fund; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institute for General Medical Sciences 

Cool Videos: Battling Bad Biofilms

Metabolomics of Bacterial BiofilmsPeriodically, I’ve posted some of the winners of the video competition to celebrate the Tenth Anniversary of the NIH Common Fund. After an intermission of several months, our scientific film fest is back to take another bow. This cool animation shows what some NIH-funded researchers are doing to address a serious health threat: hospital-acquired infections. Such infections can lead to hard-to-heal wounds, such as the foot sores that can trouble people with diabetes, and pressure ulcers in the elderly.

The stubbornness of such wounds owes, in part, to the infection-causing bacteria joining forces to improve their chances of survival within the injury. These microbes literally stick together to form microbial communities, called biofilms, that can resist antibiotics and evade our immune defenses. This strength in numbers has researchers pondering strategies that target the entire biofilm in innovative ways. One promising possibility involves exploiting metabolomics, which tracks the products produced by the bacterial troublemakers, and may provide new perspectives on how to battle this increasingly common healthcare problem.

The video was made by the laboratory of Mary Cloud Ammons at Montana State University in Bozeman. Ammons, who receives research support through the NIH Common Fund to study bacterial metabolomics, describes her work in this way: “The sixth leading cause of death in the United States is the result of hospital-acquired infections, which often result in nonhealing wounds colonized by communities of bacteria call biofilms. The research in our lab aims to uncover the mechanisms at the root of the deviation from the normal healing process that results in the development of chronic wounds. These metabolomic studies identify specific metabolite profiles that may be associated with pathogenicity in the chronic wound and could potentially be used in novel noninvasive diagnostics.”

Links:

Ammons Lab (Montana State University, Bozeman)

Ammons NIH Project Information (NIH RePORTER)

Common Fund (NIH)

LabTV: Curious about Post-Traumatic Osteoarthritis

LabTV-Avery White

If you like sports and you like science, I think you’ll enjoy meeting Avery White, an undergraduate studying biomedical engineering at the University of Delaware in Newark. In this LabTV profile, we catch up with White as she conducts basic research that may help us better understand—and possibly prevent—the painful osteoarthritis that often pops up years after knee injuries from sports and other activities.

Many athletes, along with lots of regular folks, are familiar with the immediate and painful consequences of tearing the knee’s cartilage (meniscus) or anterior cruciate ligament (ACL). Most also know that such injuries can usually be repaired by surgery. Yet, many people aren’t aware of the longer-term health threat posed by ACL and meniscus tears: a substantially increased risk of developing osteoarthritis years down the road—in some individuals, even as early as age 30. While treatments are available for such post-traumatic osteoarthritis, including physical therapy, pain medications, and even knee-replacement surgery, more preventive options are needed to avoid these chronic joint problems.

White’s interest in this problem is personal. She’s a volleyball player herself, her sister tore her ACL, and her mother damaged her meniscus. After spending a summer working in a lab, this Wilmington, DE native has grown increasingly interested in the field of tissue engineering. She says it offers her an opportunity to use “micro” cell biology techniques to address a “macro” challenge: finding ways to encourage the body to generate healthy new cells that may prevent or reverse injury-induced osteoarthritis.

What’s up next for White? She says maybe a summer internship in a lab overseas, and, on the more distant horizon, graduate school with the goal of earning a Ph.D.

Links:

LabTV

University of Delaware Biomedical Engineering

Science Careers (National Institute of General Medical Sciences/NIH)

Careers Blog (Office of Intramural Training/NIH)

Scientific Careers at NIH

LabTV: Curious About Tuberculosis

LabTV-Bree AldridgeOne reason that I decided to share these LabTV profiles is that they put a human face on the amazingly wide range of NIH-supported research being undertaken every day in labs across the country. So far, we’ve met young scientists pursuing basic, translational, and clinical research related to the immune system, cancer, Alzheimer’s disease, and the brain’s natural aging process. Today, we head to Boston to visit a researcher who has set her sights on a major infectious disease challenge: tuberculosis, or TB.

Bree Aldridge, PhD, an assistant professor at Tufts University School of Medicine in Boston, runs a lab that’s combining microbiology and bioengineering in an effort to streamline treatment for TB, which leads to more than 2 million deaths worldwide every year [1]. Right now, people infected with Mycobacterium tuberculosis—the microbe that causes TB—must take a combination of drugs for anywhere from six to nine months. When I was exposed to TB as a medical resident, I had to take a drug for a whole year. These lengthy regimens raise the risk that people will stop taking the drugs prematurely or that an opportunistic strain of M. tuberculosis will grow resistant to the therapy. By gaining a better basic understanding of both M. tuberculosis and the cells it infects, Aldridge and her colleagues hope to design therapies that will fight TB with greater speed and efficiency.

Continue reading

Enlisting mHealth in the Fight Against River Blindness

CellScope Loa

When it comes to devising new ways to provide state-of-the art medical care to people living in remote areas of the world, smartphones truly are helping scientists get smarter. For example, an NIH-supported team working in Central Africa recently turned an iPhone into a low-cost video microscope capable of quickly testing to see if people infected with a parasitic worm called Loa loa can safely receive a drug intended to protect them from a different, potentially blinding parasitic disease.

As shown in the video above, the iPhone’s camera scans a drop of a person’s blood for the movement of L. loa worms. Customized software then processes the motion to count the worms (see the dark circles) in the blood sample and arrive at an estimate of the body’s total worm load. The higher the worm load, the greater the risk of developing serious side effects from a drug treatment for river blindness, also known as onchocerciasis.

Continue reading